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Abstract: By a Riemann function we mean a function f : Zn → Z such that f(d) = f(d1, . . . , dn) is equals
0 for deg(d) = d1 + · · ·+ dn sufficiently small, and equals deg(d) + C for a constant, C, for deg(d) sufficiently
large. For such an f , for any K ∈ Zn there is a unique Riemann function f∧K such that for all d ∈ Zn we have

f(d)− f∧K(K− d) = deg(d) + C

which we call a generalized Riemann-Roch formula. Our motivation for this definition is that (1) adding 1 to
the Baker-Norine rank function of any graph yields a Riemann function; and (2) for the results below, we need
to consider non-negative valued functions f .

We demonstrate a class of Riemann functions f : Z2 → Z that are modeled by sheaves, Md with d ∈ Z2

over a finite topological space, that models the associated generalized Riemann-Roch formula as expressing
the Euler characteristic: the nonzero Betti numbers of Md are the zeroth and first, which respectively equal
f(d) and f∧K(K − d). The sheaves Md satisfy many properties akin to the sheaves that model the classical
Riemann-Roch formula as expressing an Euler characteristic.

Any Riemann function f : Z2 → Z can be written as the difference of two functions modeled by sheaves,
so that the generalized Riemann-Roch formula of f is modeled as an Euler characteristic formula of a family,
{Md}d∈Z2 , of virtual (i.e., a formal difference of) sheaves. We do the same for any Riemann function f : Zn → Z
with n ≥ 2, by restricting any n − 2 of its variables, and varying the remaining two variables. We show that
the resulting family of virtual sheaves obtained, {Md}d∈Zn , are—up to isomorphism—independent of all the
choices made.

Keywords: Betti numbers; Euler characteristic; Cohomology; Duality; Graph Riemann-Roch theorem; Rie-
mann function; Riemann’s theorem
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1 Introduction

The main goal of this article is to develop a way to understand a large class of what we call generalized Riemann-
Roch formulas as formulas that express an Euler characteristic of a certain sheaves of vector spaces; we later
show that such sheaves satisfy a property akin to Serre duality for line bundles on curves.

This article does not assume any prior knowledge of sheaf theory. In fact, we mostly speak of k-diagrams,
where k is an arbitrary field, which is a structure of five k-vector spaces with some linear transformations
between them. We mention sheaves only in the last section of this article, where we explain the connection of
k-diagrams and their invariants to sheaf theory.

This article was motivated by the question of Baker-Norine [5] as to whether their “graph Riemann-Roch
formula” can be viewed as such an Euler characteristic formula. However, our main results apply to any such
formula that arises from a much wider and simpler class of functions that we call Riemann functions. Roughly
speaking, our main result says is better that any such formula can be modeled as such, provided that (1) one is
willing to work with “formal differences” of k-diagrams (or sheaves), and (2) one is willing to make a number
of ad hoc choices in building the model (which we will prove do not change the equivalence class of the formal
difference of k-diagrams). We therefore view this article as a first step in modeling Riemann-Roch formulas, that
we hope will ultimately lead to better—meaning simpler and less ad hoc—models of Riemann-Roch formulas.
Beyond this, the foundations we develop to construct our models have a number of interesting byproducts.
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We emphasize that the main results in this article do not assume any prior knowledge beyond some basic
combinatorics and linear algebra. We do not assume the reader is familiar with the Baker-Norine formula for
any of our main results. However, some examples we use to illustrate our theorems—which are not essential to
their statements or proofs—are chosen from the Baker-Norine formula for graphs and related formulas; hence,
we briefly describe the Baker-Norine formula and similar formulas. We do not assume any familiarity with sheaf
theory (either on graphs, as in [13], or in the classical setting) or with the Riemann-Roch formula; however, our
techniques mimic ideas from there, and we briefly discuss these connections in Section 10.

At this point, let us summarize our main results, using notation that is common in the literature and made
precise starting in the next section.

1.1 Riemann Functions

We use Z to denote the integers, and N = Z≥1 = {1, 2, . . .} for the natural numbers. For n ∈ N we use [n] to
denote {1, . . . , n}. For d = (d1, . . . , dn) ∈ Zn, the degree of d is defined as deg(d) = d1 + · · · + dn, and endow
Zn with its usual partial order, writing d′ ≤ d to mean d′i ≤ di for all i ∈ [n].

By a Riemann function we mean a function f : Zn → Z such that:

1. f(d) = 0 for deg(d) sufficiently small, and

2. for some C ∈ Z—called the offset of f—we have f(d) = deg(d) + C for deg(d) sufficiently large.

If so, setting h : Zn → Z to be the function given by

h(d)
def
= deg(d) + C,

we have that for each K ∈ Zn the function f∧K : Zn → Z defined by

f∧K(d)
def
= f(K− d)− h(K− d) (1)

satisfies
f∧K(K− d)

def
= f(d)− h(d),

and therefore
∀d ∈ Zn, f(d)− f∧K(K− d) = h(d) = deg(d) + C; (2)

moreover, (1) easily implies that f∧K is also a Riemann function (with offset −deg(K)−C; see Proposition 2.1).
We refer to the above formula as a generalized Riemann-Roch formula for f . We say that (2) or f is self-dual
if f∧K = f .

The point of articles such as [2, 5] is to study certain Riemann functions of interest, f , and determine if
such f = f∧K for some K. Our approach may seem a bit “happy-go-lucky,” in that we develop combinatorics
and models for any Riemann-Roch formula, whether or not self-duality holds. However, as we explain below,
self-duality is not preserved under restrictions—which is how we build our models—and hence we will be forced
to consider Riemann-Roch formulas without self-duality.

The motivating example for us is that if G = (V,E) is a graph with an ordered vertex set V = {v1, . . . , vn},
then Baker-Norine [5] defined the rank, a function rBN,G : Zn → Z; it is a consequence of the Baker-Norine
graph Riemann-Roch formula there that 1 + rBN,G is a Riemann function. There is a large literature on these
and related functions [2–5, 8], which is strongly related to chip firing games and the sandpile model; see [4, 8]
and the references there for more historical context. Although we have organized this article primarily for the
reader interested in the Baker-Norine rank and related functions, our results do not require any knowledge of
such functions. Our motivation for the term Riemann function is the classical Riemann’s theorem for curves.

1.2 Weights and Models for Riemann functions Z2 → Z that are Perfect Matchings

We model Riemann functions Z2 → Z by starting with a particularly simple case of functions, related to what
we call perfect matchings. To describe this case, we note that for each Riemann function f : Z2 → Z there is a
unique function W : Z2 → Z such that for all d ∈ Z2 we have

f(d) =
∑
d′≤d

W (d);

we call W a weight function or the weight of f (Subsection 2.5) furthermore, W (d) ≥ 0 for all d holds if and
only if there is a bijection π : Z→ Z such that W (i, j) = 1 if j = π(i), and otherwise W (i, j) = 0. In this case,
we call W a perfect matching.

If W is a perfect matching, then the formula (2) can be viewed as an Euler characteristic in a natural
way: namely, we will define a family of k-diagrams (which are essentially sheaves of k-vector spaces on a fixed
diagram) {MW,d}d∈Z indexed on d ∈ Z2 such that:
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1. for all d ∈ Z2, MW,d has Betti numbers, bi(MW,d), which vanish except for i = 0, 1;

2. for all d ∈ Z2,
f(d) = b0(MW,d), (3)

and

3. for all d ∈ Z2, and any K ∈ Z2,
f∧K(K− d) = b1(MW,d) (4)

(the left-hand-side is independent of K).

We will explain what this means, and we assume no knowledge of sheaf theory or Betti numbers. Defining
the Euler characteristic, χ(M) of a k-diagram (or sheaf), M, as usual, i.e., as the alternating sum of its Betti
numbers, (2) is equivalent to

χ(MW,d) = deg(d) + C.

The construction of MW,d has two additional important properties: first, for j = 1, 2, one has a simple
relationship between MW,d+ej

and MW,d (involving a skyscraper k-diagram) that immediately implies

χ(MW,d+ej
) = χ(MW,d) + 1; (5)

hence as soon as one verifies that χ(MW,d) = deg(d)+C for some C ∈ Z and for a single d ∈ Z2, it immediately
follows that this holds for all d ∈ Z2. Second, as part of our discussion of weights, it will turn out that for any
K ∈ Z2, setting L = K + (1, 1), the weight of f∧K is the function W ∗L given by W ∗L(d) = W (L−d). It will follow
that one has, for i = 0, 1,

bi(MW∗L ,K−d) = b1−i(MW,d).

We will show that this equality of integers actually arises from an isomorphism

Hi(MW∗L ,K−d)∗ → H1−i(MW,d), (6)

which in turn arises from a statement akin to Serre duality, that states that for some k-diagrams, F , and for
i = 0, 1, there is an isomorphism

Hi(F)∗ → Ext1−i(F , k/B1,B2
), (7)

where k/B1,B2
is a k-diagram that therefore plays the role of the canonical sheaf in Serre duality. We caution

the reader that there is “bad news” here: although (7) does hold of k-diagrams, the “dualizing sheaf,” k/B1,B2

reflects a property of k-diagrams and nothing about the “geometry” of the sheavesMW,d. In a stronger type of
duality theorem one would expect that (6) would (1) involve a dualizing sheaf closer in “geometry” to theMW,d,
and (2) would follow by taking global sections of an expression involving “sheaf Hom.” See Subsection 10.10
for more details, and [9].

1.3 Models for General Riemann Functions Z2 → Z
If f : Z2 → Z is a general Riemann function, its weight, W , may have negative values. In this case, one can
model f by Euler characteristics, provided that one passes to virtual k-diagrams and virtual Euler characteristics
in the following sense: by a virtual k-diagram or formal difference of k-diagrams we mean a pair of k-diagrams
(F1,F2), where we consider (F1,F2) to be equivalent (F ′1,F ′2) if for some k-diagram G we have

F1 ⊕F ′2 ⊕ G ' F2 ⊕F ′1 ⊕ G

(one often calls this the Grothendieck group arising from a commutative monoid); assuming that we work over
the category of k-diagrams with finite Betti numbers, we define

bi(F1,F2) = bi(F1)− bi(F2),

which is independent of the equivalence class of (F1,F2). We will prove that for any weight W : Z2 → Z of a
Riemann function Z2 → Z can be written as

W = W1 + · · ·+Wk − W̃1 − · · · − W̃k−1 (8)

for some k ≥ 1, where each Wi and W̃i are perfect matchings; we then define the formal difference

MW,d =
(
Fd, F̃d

)
,

where
Fd =MW1,d ⊕ · · · ⊕MWk,d, F̃d =MW̃1,d

⊕ · · · ⊕MW̃k−1,d
;

it is easy to verify that, up to equivalence, (Fd, F̃d) is independent of the way one writes W in (8). Then the
formal difference MW,d, or really the equivalence class [MW,d], models f(d) in the sense that (3), (4), and (5)
hold with [MW,d] replacing MW,d.
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1.4 Modeling Riemann functions Zn → Z for n ≥ 3

To model a Riemann function f : Zn → Z, we piece together various two-variable restrictions of f in the
following sense: for any distinct i, j ∈ [n] and d ∈ Zn, we define the two-variable restriction of f at i, j,d to be
the function fi,j,d : Z2 → Z given by

fi,j,d(ai, aj)
def
= f

(
d + aiei + ajej

)
(and hence fi,j,d(0, 0) = f(d)). If W is the weight of fi,j,d, we use [Mf ;i,j,d] to denote the virtual k-diagram
[MW,0]. It follows that [Mf ;i,j,d] is a family of k-diagrams that satisfies

b0([Mf ;i,j,d]) = f(d),

χ([Mf ;i,j,d]) = deg(d) + C

where C is the offset of f , and for any K ∈ Z2 we have

b1([Mf ;i,j,d]) = f∧K(K− d).

Of course, Mf ;i,j,d appears to depend on the choice of i, j; however, we will prove that for any j′ ∈ [n] distinct
from i, j, [Mf ;i,j,d] is equivalent to [Mf ;i,j′,d], and hence the equivalence class [Mf ;i,j,d] is independent of the
choice of i, j.

Moreover, in case Mf ;i,j,d and Mf ;i,j′,d are k-diagrams, not just virtual k-diagrams (i.e., the weights of
fi,j,d and fi,j′,d are perfect matchings), we will prove thatMf ;i,j,d andMf ;i,j′,d are isomorphic as k-diagrams.

We therefore use the notation [Mf at d] to denote the equivalence class of [Mf ;i,j,d], which is independent
of i, j. We will show that (6) gives rise, for i = 0, 1 to an isomorphism

Hi
(
[Mf at d]

)∗ → H1−i([Mf∧K at K−d]
)
. (9)

This involves the following fundamental fact: if f : Zn → Z is a Riemann function, and if we fix d3, . . . , dn and
K ∈ Zn, and we set g(d1, d2) = f(d) viewing d1, d2 as variables, then the resulting generalized Riemann-Roch
formula for g is

g(d1, d2)− g∧(K1,K2)(K1 − d1,K2 − d2) = d1 + d2 + Cg

where Cg is the offset of g. It is not hard to see that this formula is the restriction of (2), in the sense that

d1 + d2 + Cg = deg(d) + Cf

where Cf is the offset of f , and

g(d1, d2) = f(d), g∧(K1,K2)(K1 − d1,K2 − d2) = f∧K(K− d). (10)

It follows that the generalized Riemann-Roch formulas (2) restricts to two-variable generalized Riemann-Roch
formulas, and that all the two-variable formulas (i.e., fixing some n− 2 variables and varying the two remaining
variables) determine the all the n-variable formulas.

The articles [2, 5] focus on proving that the Riemann functions there are self-dual. We remark that the
notion of self-duality is not well-behaved under two-variable restrictions: indeed, if f : Zn → Z satisfies f∧K = f
for some K ∈ Zn, then (10) implies that for d3, . . . , dn and K fixed we have

g(d1, d2) = f(d1, . . . , dn) g∧(K1,K2)(K1 − d1,K2 − d2) = f(K1 − d1, . . . ,Kn − dn).

Hence, g is not generally self-dual. Hence, if f is self-dual, the two-variable restrictions in a single generalized
Riemann-Roch formula still come in pairs, g and g∧(K1,K2).

1.5 Additional Remarks and Future Work

The invariants of k-diagrams that we compute—such as their Betti numbers, and Euler characteristics—all
arise from their cohomology groups, which to each k-diagram, M, are computed as the kernel and cokernel of
an associated linear transformation τM. Therefore, the reader who prefers can translate our entire discussion
and use of k-diagrams into equivalent statements regarding the kernel and cokernel of the associated linear
transformations.

We also remark that our duality theorems, as stated above, may seem trivial: for example, given that for a
perfect matching W we have

bi(MW∗L ,K−d) = b1−i(MW,d),
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it is immediate that the spaces
Hi(MW∗L ,K−d) and H1−i(MW,d)

and their duals are all isomorphic, since these are all k-vector spaces of this same dimension. Hence, in our
theorems and their proofs, it is also important to note the way we construct these duality isomorphisms; often,
we make this explicit in the statement of the theorem (see, e.g., Theorem 9.2).

The Riemann functions f : Zn → Z associated with the Baker-Norine rank [5] and its generalizations studied
by Amini and Manjunath [2] are periodic (in a sense described in Subsection 2.7). In this case, the k-diagrams
MW,d associated the two-variable restrictions of f have a much stronger structure: namely, they are O-modules,
where O is a k-diagram of rings. In this case, we believe that the diagrams MW,d themselves act as canonical
k-diagrams in a form of Serre duality, we explain this at the end of this article, and plan to address this in
future work. For this reason, when W : Z2 → Z is periodic, when writing W as a difference of a sum of perfect
matchings (8), we will be interested in showing that the Wi and W̃i can be chosen with the same periodicity.

A good challenge for future work is to develop models that explain generalized Riemann-Roch formulas as
a type of sheaf or diagram of k-vector spaces that does not have all the ad hoc choices we make, and that does
not need to pass to virtual diagrams or virtual sheaves.

Another—perhaps independent challenge—is to use the theory of diagrams or sheaves to give proofs of self-
duality, such as in the Baker-Norine formula [5] and some more general situations, such as those studied by
Amini and Manjunath [2].

1.6 Organization of the Rest of this Article

In Section 2, we introduce some basic notation and state some theorems about the weight of a Riemann function,
referring the reader to [11] for the proofs. In Section 3, we will prove some theorems regarding the weights
of Riemann functions Z2 → Z that we will use. In Section 4, we give some conventions regarding the sheaves
we build—that we call k-diagrams—and show how to use them to model a Riemann function Z2 → Z whose
weight is non-negative, i.e., is a perfect matching. In Section 5 we discuss morphisms between k-diagrams,
and a number of related ideas needed later on; in particular, to define virtual k-diagrams, we need to know
some facts about direct sums and isomorphisms of k-diagrams. In Section 6 we introduce indicator k-diagrams
that gives an alternate way to view the k-diagrams that we use to model Riemann functions Z2 → Z; we will
need them when we prove duality theorems later on. In Section 7, we describe our conventions about virtual
k-diagrams and show that any Riemann function Z2 → Z can be modeled by a single equivalence class of virtual
k-diagrams. In Section 8, we model any Riemann function Zn → Z by diagrams obtained by fixing any n− 2 of
its variables and modeling the resulting Riemann function Z2 → Z. In Section 9, we will prove the i = 1 case
of (7), (6), and (9). In Section 10, we prove the i = 0 case of (7) and explain the connection of k-diagrams to
sheaf theory; we tie up a few other loose ends, including a discussion of periodic Riemann functions and a Serre
functor computation that yields k/B1,B2

.

2 Basic Terminology and Weights

In this section, we introduce some basic terminology used throughout this paper, including the definition of
a Riemann function and its weight function. Then we derive some combinatorial results about the weights of
Riemann functions that we will need to construct our models.

The weight function of a Riemann function is quite interesting for its own sake, and we refer to [11] for a
fuller discussion of weights of Riemann functions.

2.1 Basic Notation

We use Z,N to denote the integers and positive integers; for a ∈ Z, we use Z≤a to denote the integers less than
or equal to a, and similarly for the subscript ≥ a. For n ∈ N we use [n] to denote {1, . . . , n}. We use bold face
d = (d1, . . . , dn) to denote elements of Zn, using plain face for the components of d; by the degree of d, denoted
deg(d) or at times |d|, we mean d1 + . . .+ dn.

We set
Zndeg 0 = {d ∈ Zn | deg(d) = 0},

and for a ∈ Z we similarly set

Zndeg a = {d ∈ Zn | deg(d) = a}, Zndeg≤a = {d ∈ Zn | deg(d) ≤ a}.

We use ei ∈ Zn (with n understood) to denote the i-th standard basis vector (i.e., whose j-th component is
1 if j = i and 0 otherwise), and for I ⊂ [n] (with n understood) we set

eI =
∑
i∈I

ei; (11)
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hence, in case I = ∅ is the empty set, then e∅ = 0 = (0, . . . , 0), and similarly e[n] = 1 = (1, . . . , 1).
For n ∈ N, we endow Zn with the usual partial order, that is

d′ ≤ d iff d′i ≤ di ∀i ∈ [n],

where [n] = {1, 2, . . . , n}.

2.2 Riemann Functions, Generalized Riemann-Roch Formulas, and Self-Duality

In this section, we define Riemann functions and generalized Riemann-Roch formulas and give some examples.

Definition 2.1. We say that a function f : Zn → Z is a Riemann function if for some C, a, b ∈ Z we have

1. f(d) = 0 if deg(d) ≤ a; and

2. f(d) = deg(d) + C if deg(d) ≥ b;
we refer to C as the offset of f .

In our study of Riemann functions, it will be useful to introduce the following terminology.

Definition 2.2. If f, g are functions Zn → Z, we say that f equals g initially (respectively, eventually) if
f(d) = g(d) for deg(d) sufficiently small (respectively, sufficiently large); similarly, we say that that f is
initially zero (respectively eventually zero) if f(d) = 0 for deg(d) sufficiently small (respectively, sufficiently
large).

Therefore f : Zn → Z is a Riemann function if and only if it is initially zero and it eventually equals the
function deg(d) + C for a constant C ∈ Z that we call the offset of f .

In particular, Riemann’s theorem, which is a precursor to the classical Riemann-Roch theorem, gives exam-
ples of Riemann functions. In the next subsection, we will give a number of examples of Riemann functions,
including those associated with the Baker-Norine rank function of a graph [5] and related functions. Before
doing so, we give some of the basic properties of Riemann functions.

Definition 2.3. Let f : Zn → Z be a Riemann function with offset C, and K ∈ Zn. The K-dual of f , denoted
f∧K, refers to the function Zn → Z given by

f∧K(d) = f(K− d)− deg(K− d)− C. (12)

Replacing d with K− d we equivalently write

f(d)− f∧K(K− d) = deg(d) + C (13)

and refer to this equation as a generalized Riemann-Roch formula. We say that f is self-dual at K if f∧K = f .

If f is a Riemann functions that is self-dual at K, then (13) reads

f(d)− f(K− d) = deg(d) + C,

which resembles the classical Riemann-Roch formula and the Baker-Norine analog [5] and related formulas. We
remark that in (13), f∧K(K− d) equals f(d)− deg(d)− C, which is independent of K.

Proposition 2.1. Let f : Zn → Z be a Riemann function with offset C, and K ∈ Zn. Then:

1. f∧K is a Riemann function with offset −deg(K)− C;

2. (f∧K)∧K = f ;

3. for any other Riemann function, g : Zn → Z, f = g if and only if for some (equivalently any) K ∈ Zn,
f∧K = g∧K.

Proof. This proof is a straightforward calculation. For d sufficiently small we have

f(K− d) = deg(K− d) + C,

which by (12) implies that f∧K is initially zero. For d with deg(d) sufficiently large we have f(K− d) = 0, and
hence (12) implies that for deg(d) sufficiently large

f∧K(d) = deg(K− d)− C = deg(d)− deg(K)− C.
Hence, f∧K is a Riemann function with offset −deg(K)− C.

To see claim (2), since f∧K is a Riemann function with offset −deg(K)− C, by (12) we have

(f∧K)∧K(d) = f∧K(K− d)− deg(K− d)−
(
deg(K)− C

)
= f∧K(K− d) + deg(d) + C,

which (12) implies
= f(d)− deg(d)− C + deg(d) + C = f(d).

To prove claim (3), if f = g then we may apply ∧K to both to conclude that f∧K = g∧K. Conversely, if f∧K = g∧K,
then applying ∧K and using claim (2) we get f = g.
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2.3 Examples of Riemann functions

We briefly give some examples of Riemann functions. This section is not essential to the rest of this paper,
although these examples are helpful for intuition; we will refer to some of these examples to illustrate some of
our results.

Example 2.1. Let G = (V,E) be a connected graph with V = {v1, . . . , vn}. Let L = Image(∆G) be the image
of the Laplacian of G, ∆G. Say that d ∈ Zn is effective if there is a d′ ≥ 0 (i.e., d′i ≥ 0 for all i ∈ [n]) such
that d − d′ ∈ L, and otherwise say that d is not effective. Let N ⊂ Zn be the subset of elements that are not
effective. Let

f(d) = DistanceL1(d,N ) = min
d′∈N

‖d− d′‖L1 , (14)

where L1 is the usual L1-norm,
‖x‖L1 = |x1|+ · · ·+ |xn|.

Then rBN,G = −1 + f is the usual Baker-Norine rank [5] of G, and the Baker-Norine Graph Riemann-Roch
formula [5] asserts that

f(d)− f(K− d) = deg(d) + 1− g
where g = 1 + |E| − |V | (which is non-negative since G is connected), and where

K =
(
degG(v1)− 2, . . . ,degG(vn)− 2

)
.

Since N contains all elements of Zn of negative degree, it follows that f is initially zero; the Baker-Norine
formula implies that f is a Riemann function with offset 1− g that is self-dual at K.

Example 2.2. Let L be, more generally, any lattice of rank n − 1 in Zn0 . Then the same definitions work—
effective, not effective, N , and furthermore Amini and Manjurath [2] show that f as in (14) is a Riemann
function with offset 1 − gmax defined on page 5 there. They give conditions—which hold sometimes, but not
always—for f to be self-dual at some K ∈ Zn.

One can slightly generalize this construction of Riemann functions, f , in (14) by allowing N ⊂ Zn to satisfy
some weaker conditions; see [11].

Example 2.3. Let P1, . . . , Pn be n points of an algebraic curve over an algebraically closed field, k, and let K
denote the function field of the curve. Let

f(d) = dimk{g ∈ K | (g) ≥ −d1P1 − · · · − dnPn} (15)

where (g) is the (Weil) divisor associated with g (and we view (0) as larger than any divisor). Then the classical
Riemann theorem states that f is a Riemann function, and that its offset equals 1− g, where g is the genus of
the curve.

The above example was our motivation for the name Riemann function.

2.4 Restrictions of Riemann functions and Alternating Sums

In this subsection, we give examples of obtaining Riemann functions and constructing new Riemann functions.
Both ideas are fundamental to the way we construct the models in this article.

Example 2.4. Let f : Zn → Z be any Riemann function with f(d) = deg(d) + C for deg(d) sufficiently large.
Then for any distinct i, j ∈ [n] and d ∈ Zn, the function fi,j,d : Z2 → Z given as

fi,j,d(ai, aj) = f
(
d + aiei + ajej

)
(16)

is a Riemann function Z2 → Z, and for ai + aj large we have

fi,j,d(ai, aj) = ai + aj + C ′, where C ′ = deg(d) + C.

We call fi,j,d a two-variable restriction of f ; we may similarly restrict f to one variable or three or more
variables; clearly, any restriction of a Riemann is again a Riemann function. (We write ai, aj as the arguments
for fi,j,d instead of, say, a1, a2, to stress that ai corresponds to adding aiei in (16), and similarly for aj).

In the above example, it will be crucial to us that C ′ depends only on d and not on i, j.

Example 2.5. If for some s, n ∈ N, f1, . . . , fs and f̃1, . . . , f̃s−1 are Riemann functions Zn → Z, then so is

f = f1 + · · ·+ fs − (f̃1 + · · ·+ f̃s−1).

Moreover, the offset, C, of f is given as

C = (C1 + · · ·+ Cs)− (C̃1 + · · ·+ C̃s−1), (17)

where Ci is the offset of fi and C̃i is the offset of f̃i.
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2.5 The Weight of a Riemann function

Our main technique of modeling Riemann functions involves their weights. In this article, we are concerned
with weights of Riemann functions Z2 → Z, but the foundations of weights apply to Riemann functions in any
number of variables; see [11].

If f : Zn → Z is initially zero, then there is a unique initially zero W : Zn → Z for which

∀d ∈ Zn, f(d) =
∑
d′≤d

W (d′), (18)

since we can determine W (d) inductively on deg(d), setting W initially zero (in degrees where f is initially
zero), and using the equation

W (d) = f(d)−
∑

d′≤d, d′ 6=d

W (d′).

Definition 2.4. Let f : Zn → Z be initially zero. By the weight of f we mean the unique initially zero function
W : Zn → Z satisfying (18).

Recall from (11) the notation eI for I ⊂ [n].

Proposition 2.2. Consider the operator m on functions f : Zn → Z defined via

(mf)(d) =
∑
I⊂[n]

(−1)|I|f(d− eI),

and the operator on functions W : Zn → Z that are initially zero given by

(sW )(d) =
∑
d′≤d

W (d′).

If f is any initially zero function, and W is the weight of f , then we have f = sW and W = mf .

The proof is an easy computation; see [11] for details. One may also write

(mf) = (1− t1) . . . (1− tn)f,

where ti is the operator taking f to the function

(tif)(d) = f(d− ei);

it easily follows that for n ≥ 2, if W : Zn → Z is the weight of any Riemann function f : Zn → Z, then W is
eventually zero.

2.6 Weights and the Riemann-Roch formulas

Definition 2.5. If W : Zn → Z is any function and L ∈ Zn, the L-dual weight of W , denoted W ∗L refers to the
function given by

W ∗L(d) = W (L− d).

It is immediate that (W ∗L)∗L = W .

Theorem 2.1. Let f : Zn → Z be a Riemann function, and W = mf . Let K ∈ Zn and let L = K + 1.

1. We have
m
(
f∧K
)

= (−1)nW ∗L = (−1)n(mf)∗L.

2. f∧K = f if and only if W ∗L = (−1)nW .

The proof is a straightforward computation; see [11] for details.
We remark that it is immediate that the map W 7→ W ∗L is an involution, i.e., applying it twice gives the

same function; furthermore, the map W 7→ W ∗L is defined on all functions Zn → Z. By contrast, the fact that
∧
K is an involution requires a bit more computation (in the proof of Proposition 2.1), and it is only defined on
Riemann functions (at least as we have defined it) since the definition of f∧K in (12) requires us know the offset,
C, of f . [In [11], f∧K is defined on a more general class of functions, f , namely f that are initially zero and
whose weight, W , is eventually zero.] This gives two indications that working with the weight of a Riemann
function has advantages over working with the Riemann function itself.
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2.7 Translation Invariance and Periodicity

This subsection has two goals: first, in case f = f∧K, then we study the uniqueness of such a K. Second, we will
introduce the related notation of periodicity which will be useful in future work to show that certain generalized
Riemann-Roch formulas have a second type of Serre duality beyond what we cover in this article; we will briefly
explain this in Section 10.

Definition 2.6. Let f : Zn → Z be any function. We say that f is invariant by translation under t ∈ Zn if

∀d ∈ Zn, f(d + t) = f(d).

We define the set of invariant translations of f to be the set of all such t.

In the above definition, we easily see that the set, T , of invariant translations of a function, f , is a lattice,
i.e., T is closed under addition, and if t ∈ T then also −t ∈ T . Furthermore, if f is translation invariant by t,
then for any d ∈ Zn we have f(d) = f(d +mt) for any m ∈ Z; it follows that if f is non-zero but initially zero,
then any such t must lie in Zndeg 0.

Proposition 2.3. Let f : Zn → Z be any Riemann function, and W = mf its weight. Let T be the set of
invariant translations of f . Then

1. T equals the set of invariant translations of W ;

2. for any L1,L2 ∈ Zn, W ∗L1
= W ∗L2

if and only if L1 − L2 ∈ T ;

3. for any K1,K2 ∈ Zn, f∧K1
= f∧K2

if and only if K1 −K2 ∈ T ;

4. if for some K ∈ Zn we have f = f∧K, then for any K′ ∈ Zn, f = f∧K′ if and only if K′ −K ∈ T .

5. if for some L ∈ Zn we have W = W ∗L, then for any L′ ∈ Zn, W = W ∗L′ if and only if L′ − L ∈ T .

Proof. Claim (1) follows by observing that m and s commute with translation by t, (i.e., the operator taking f
to f̃ given by f̃(d) = f(d + t)).

To prove claim (2), we see that W ∗L1
= W ∗L2

iff

(W ∗L1
)∗L2

= (W ∗L2
)∗L2

= W

iff, for all d ∈ Zn we have

W (d) = (W ∗L1
)∗L2

(d) = (W ∗L1
)(L2 − d) = W

(
L1 − (L2 − d)

)
= W (d + L1 − L2),

i.e., L1 − L2 ∈ T .
Claim (3) follows from claims (1) and (2). Claim (4) follows from claim (3), and claim (5) from claim (2).

Definition 2.7. We say that a function f : Zn → Z is r-periodic for an r ∈ Z if for all i, j ∈ [n] we have that
f is invariant under translation by r(ei − ej).

Example 2.6. In Examples 2.1 and 2.2, f as in (14) is translation invariant by L ⊂ Zndeg 0 where Zndeg 0/L is
finite (i.e., L is of rank n − 1). If p = |Zndeg 0/L|, then any element of Zndeg 0/L is of order divisible by p, and
hence f is p-periodic.

Example 2.7. If in Example 2.3 we take an elliptic curve, and P1 is any point, then P2 − P1 has finite order
for only countably many P2; hence f is r-periodic for some r ≥ 1 for only countably many P2.

2.8 Weights of Riemann Functions Z2 → Z
We will be especially interested in Riemann functions Z2 → Z and their weights W = mf . It is useful to notice
that for such functions we have that for any fixed d1 and d′2 sufficiently large,

f(d1, d
′
2)− f(d1 − 1, d′2) = 1,

and that for any d1, d
′
2 ∈ Z we have

f(d1, d
′
2)− f(d1 − 1, d′2) =

d′2∑
d2=−∞

W (d1, d2).
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Hence, for fixed d1,
∞∑

d2=−∞

W (d1, d2) = 1, (19)

and similarly, for fixed d2 we have
∞∑

d1=−∞

W (d1, d2) = 1. (20)

We easily check the converse, i.e., if W : Z2 → Z is initially and eventually zero and satisfies (19) and (20), then
for d′1 + d′2 fixed and sufficiently large we have

f(d′1, d
′
2) + 1 = f(d′1 + 1, d′2) = f(d′1, d

′
2 + 1),

and we conclude that f is a Riemann function. Viewing W as a two-dimensional infinite array of numbers
indexed in Z× Z, one can therefore say that W : Z2 → Z is the weight of a Riemann function if and only if all
its “row sums” (19) and all its “column sums” (20) equal 1.

2.9 Weights of Slowly Growing Riemann Functions Z2 → Z and Perfect Matchings

In this subsection, we make some remarks on weights that we call “perfect matchings.” In [11], these ideas were
used to compute the weight of the Baker-Norine rank on graphs of two vertices (jointed by some number of
edges). Here we will just state the definitions and an easy proposition.

Definition 2.8. We say that a function f : Zn → Z is slowly growing if for all d ∈ Zn and i ∈ [n] we have

f(d) ≤ f(d + ei) ≤ f(d) + 1.

Definition 2.9. Let W be a function Z2 → Z that is initially and eventually zero. We say that W is a perfect
matching if there exists a permutation (i.e., a bijection) π : Z→ Z such that

W (i, j) =

{
1 if j = π(i), and
0 otherwise.

(21)

It follows that for π as above, π(i) + i is bounded above and below, since W is initially and eventually 0.
Conversely, if π : Z→ Z is a bijection with π(i) + i bounded independently of i, then (21) is a perfect matching.

Proposition 2.4. Let f : Z2 → Z be a slowly growing Riemann function. Let W = mf be the weight of f .
Then W takes only the values 0 and ±1. Furthermore, for any d ∈ Z2, let a = f(d); then

W (d) = 1 ⇐⇒ f(d− e1) = f(d− e2) = f(d− e1 − e2) = a− 1,

and
W (d) = −1 ⇐⇒ f(d− e1) = f(d− e2) = a = f(d− e1 − e2) + 1.

If W is everywhere non-negative, i.e., W (d) ≥ 0 for all 0, then W is a perfect matching.

Proof. For the proof, see [11]; for ease for reading, we give the main idea: namely, since f is slowly growing, if
a = f(d), then

a− 2 ≤ f(d− e1 − e2) ≤ a.

In case f(d−e1−e2) = a−2, then for j = 1, 2, f(d−ej) must equal a−1 (since f is slowly growing), in which
case W (d) = 0. Similarly if f(d− e1 − e2) = a then f(d− ej) must equal a, and again W (d) = 0. This leaves
the case f(d− e1 − e2) = a− 1, whereupon for j = 1, 2 each f(d− ej) is either a or a− 1; this gives four cases
to check, and after checking them, we see that W (d) = 1 if and only if for j = 1, 2 both f(d − ej) are a − 1,
and W (d) = −1 if and only if for j = 1, 2 both f(d− ej) are a.

Of course, if W is r-periodic, i.e., for all d ∈ Z2, W (d) = W (d + (r,−r)), then π is skew-periodic in the
sense that π(i+ r) = π(i)− r for all i ∈ Z.
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2.10 Riemann Functions of Genus 1 and their Two-Variable Restrictions

There is a collection of Riemann functions that will be especially helpful to give concrete examples in Section 8.
This section can be skipped until then; however, the reader may want to read this now to get some more concrete
examples of Riemann functions.

Definition 2.10. Let b ∈ Z. We say that a Riemann function f : Zn → Z is of generalized genus 1 (of shift b)
if

1. for all d ∈ Zn with deg(d) 6= b,
f(d) = max

(
0,deg(d)− b

)
,

2. for all d ∈ Zn with deg(d) = b, f(d) ∈ {0, 1};

if so, we say that f is of genus 1 if b = 0.

Figure 1 depicts a genus 1 Riemann function Zn → Z with n = 2; Figure 2 depicts a generalized genus 1
Riemann function (of shift b) Zn → Z with n = 2. The figures take n = 2 for ease of depiction.
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Figure 1: Riemann Functions of Genus 1: these functions, f , satisfy: (1) f(d) = 0 if deg(d) < 0, (2) f(d) =
deg(d) if deg(d) > 0, and (3) are slowly growing, or, equivalently, satisfy f(d) = 0, 1 if deg(d) = 0. Here
we give an example of such a function Z2 → Z, (although the definition more generally allows for functions
Zn → Z). Hence f(d) is uniquely determined unless deg(d) = d1 + d2 = 0. For example: if P1, P2 are points on
an elliptic curve, and f(d) = f(d1, d2) in an (15) is a Riemann function of genus one. Another example: let G
be a connected graph of Euler characteristic 0, let v1, v2 be distinct vertices of G, and let f(d) = f(d1, d2) be 1
plus the Baker-Norine rank of G at d1v1 + d2v2. Then f is Riemann function of genus 1.
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Figure 2: Riemann Functions of Generalized Genus 1: This is equivalent to a Riemann function of genus 1 that
has been “translated by b to the right” for some b: hence f is uniquely determined except when deg(d) = b,
and in this case f(d) = 0, 1. The picture is almost identical, except for the shift in degree.

Example 2.8. If in Example 2.3, the curve is of genus 1, and P1, . . . , Pn are any points on the curve, then f
in (15) is a Riemann function of genus 1. If d ∈ Z with deg(d) = 0, then

f(d) = 1 ⇐⇒ d1P1 + · · ·+ dnPn = 0

where + is with respect to the group law in the curve with respect to some point (i.e., one chooses a point P∞
and one defines P3 = P1 +P2 if P3 is linearly equivalent to P1 +P2 −P∞), and 0 is the identity element in the
group law (i.e., the point P∞).
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Example 2.9. Let G be a cycle of length n ≥ 2, whose vertices in are, in cyclic order (of which there are 2n
choices for n ≥ 3) v1, . . . , vn. If rBN is the Baker-Norine rank, then f(d) = 1 + rBN(d) is a Riemann function
of genus g. If deg(d) = 0, then we easily see that

f(d) = 0 ⇐⇒ d1 + 2d2 + · · ·+ (n− 1)dn−1 is divisible by n

(since d1 + · · ·+dn = 0, the above divisibility by n is independent of which cyclic order we choose for v1, . . . , vn).
Hence f is the same f as in Example 2.8 where P1 is any point of order n on the curve, and Pi = iP1 in the
group law on the curve (hence we require the elliptic curve to have a point of order n, which is always the case
in the classical case over the complex numbers).

Example 2.10. The two-variable restriction of any function Zn → Z that is of generalized genus 1 is again a
function Z2 → Z that is of generalized genus 1. (Similarly for a restriction to any number of variables.)

Proposition 2.5. Let f : Z2 → Z be a Riemann function of genus 1. Then f is slowly growing. Moreover, the
weight, W , of f attains a negative value somewhere if and only if for some d′1 ∈ Z, we have

f(d′1,−d′1) = f(d′1 − 1,−d′1 + 1) = 1. (22)

Hence W is everywhere non-negative if and only if

∀d, deg(d) = 0 and f(d) = 1 ⇒ f(d− e1 + e2) = 0.

Proof. We easily see that f is slowly growing.
Next, assume that W (d) < 0 for some d ∈ Z2; by Proposition (2.4), this is equivalent to

f(d) = f(d− e1) = f(d− e2) = a = f(d− e1 − e2) + 1. (23)

holding for some a ∈ Z. Note that a ≤ 0 is impossible, for then

f(d− e1 − e2) = a− 1 ≤ −1,

which is impossible; hence a ≥ 1. Also a ≥ 2 is impossible, because otherwise f(d − e1) ≥ 2, and then the
definition of a genus 1 function implies that the degree of d−e1 is at least 2, and hence f(d) = f(d−e1) + 1 6=
f(d− e1), contradicting (23); hence a ≤ 1.

Hence 1 ≤ a ≤ 1, and so we necessarily have a = 1; hence

f(d) = f(d− e1) = f(d− e2) = a = 1 and f(d− e1 − e2) = 0.

Visualizing this as a grid, we have

f(d1 − 1, d2) = 1 f(d1, d2) = 1
f(d1 − 1, d2 − 1) = 0 f(d1, d2 − 1) = 1

and hence W (d) = −1.

Moreover, implies that d1 + d2 = 1; hence, for d′1 = d1− 1 we have (22) holds. The converse is immediate, since
(22) implies that

W (d′1 + 1,−d′1) = f(d′1 + 1,−d′1)− f(d′1,−d′1)− f(d′1 + 1,−d′1 − 1) + f(d′1,−d′1 − 1)

= 1− 1− 1 + 0 = −1.

Finally, there exists a d′1 ∈ Z such that (22) if and only if

∃d, deg(d) = 0 and f(d) = f(d− e1 + e2) = 1.

This proves the last statement of the proposition.

Corollary 2.1. Let f : Zn → Z be of genus 1 such that for for some (necessarily distinct) i, j ∈ [n] and all
d ∈ Zn of degree 0 we have

f(d) = 1 ⇒ f(d + ei − ej) = 0.

Then any restriction fi,j,d has non-negative weight, i.e., its weight is a perfect matching.

Example 2.11. Let n = 4 in Example 2.9 of a cycle of length 4, or the equivalent special case of Example 2.8,
where P1 is order 4, and Pi = iP1 for i = 2, 3, 4. We easily see that f satisfies the hypothesis of Corollary 2.1
for all distinct i, j ∈ [n]. Then the two-variable restriction of f , f1,2,0, is a Riemann function, and we easily
see that for a1 ∈ Z we have

f1,2,0(a1,−a1) = 1 ⇐⇒ a1 mod 4 = 0.

Similarly for f1,3,0, except that
f1,3,0(a1,−a1) = 1 ⇐⇒ a1 mod 2 = 0.

We easily see that the weight, W , of f1,2,0 has period 4 and W (0, 0) = W (1, 1) = W (−1, 2) = W (−2, 1) = 1
(which determines W everywhere). By contrast, the weight, W ′ of f1,3,0 has period 2 and satisfies W ′(0, 0) =
W ′(1, 1) = 1. Hence W ′(−1, 3) = W ′(−2, 2) = 1, and so W ′ 6= W .
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3 Weight Decomposition Theorems

In this section, we prove two theorems about decomposing the weight of Riemann functions Z2 → Z into an
alternating sum of perfect matchings. These are fundamental steps in modeling an arbitrary Riemann function
Z2 → Z.

3.1 r-fold Matchings and Infinite Versions of Hall’s Theorem

In this subsection, we define r-fold matchings, which feature prominently in our models; we also give two infinite
versions of Hall’s Theorem which helps to understand r-fold matchings but are not essential to the rest of this
article.

Definition 3.1. Let W : Z2 → Z be initially and eventually zero. For i ∈ Z, the i-th row sum of W (respectively,
column sum) is

∑
j∈ZW (i, j) (respectively,

∑
j∈ZW (j, i)). For any r ∈ N, we say that W is an r-fold matching

if all values of W are non-negative, and all the row sums and all the column sums of W equal r.

Of course, a perfect matching (Definition 2.9) is a 1-fold matching, and the sum of r perfect matchings
is an r-fold matching. The rest of this subsection is devoted to proving the converse, both for general r-fold
matchings and for p-periodic matchings (as equaling a sum of r p-periodic perfect matchings).

Definition 3.2. If W is a perfect matching, we refer to the π satisfying (21) as the bijection associated to W ;
if π : Z→ Z is a bijection with π(i) + i bounded independent of i, we say that W in (21) is the perfect matching
associated to π.

Of course, if W is a perfect matching with associated bijection π, then for any p ≥ 1, W is p-periodic if and
only if for all i ∈ Z we have π(i+ p) = π(i)− p.

Theorem 3.1. Let W be an r-fold matching that is p-periodic. Then there exist p-periodic perfect matchings
W1, . . . ,Wr whose sum is W .

Proof. We will first prove that there is a perfect matching W1 such that W1(i, j) ≤ W (i, j) for all i, j; if so,
then W −W1 is an (r − 1)-fold matching, and hence we prove the theorem by induction on r.

Let G = (V,E) be the bipartite graph, where V = VL q VR and all edges run from left to right, where
VL = VR = {0, 1, . . . , p− 1}, and the number of edges running from i ∈ VL to j ∈ VR is just

e(i, j) =
∑

m≡j mod p

W (i,m).

Then G is a finite bipartite graph that is r-regular on both sides, i.e., each vertex is incident upon exactly r
edges. It then follows that if V ′ ⊂ VL, and Γ(V ′) denotes the set of neighbours of VL, i.e., of vertices (in VR)
adjacent to some vertex of V ′, then |Γ(V ′)| ≥ |V ′| (since V ′ is incident upon r|V ′| edges, whose right endpoints
span at least |V ′| vertices). Similarly if V ′ ⊂ VR, then also |Γ(V ′)| ≥ |V ′|. Then Hall’s theorem implies that
G has a perfect matching, i.e., a subgraph G′ = (V,E′) where each vertex is adjacent to exactly one vertex.
This gives us a bijection π : VL → VR such that e(i, π(i)) ≥ 1. For each i = 0, . . . , p− 1 choose a j = π1(i) such
that j ≡ π(i) mod p and such that W (i, j) ≥ 1. Now extend π1(i) : {0, . . . , p− 1} → Z to a function Z→ Z by
setting for all m ∈ Z and i ∈ {0, . . . , p− 1}

π1(i+ pm) = π(i)− pm.

It follows that π is a bijection, and that its associated weight, W1, satisfies W (i, j) ≥ 1 whenever W1(i, j) = 1.
Hence W1 ≤W and we have our desired W1.

The next case we prove is the same theorem without the assumption of periodicity.

Theorem 3.2. Let W be an r-fold matching. Then there exist perfect matchings W1, . . . ,Wr whose sum is W .

The proof is well-known, based on the a general principle that Philip Hall’s “marriage theorem” holds
on a bipartite graph with countably many vertices on each side, provided that each vertex has finitely many
neighbours (namely, in our case, at most r neighbours); see Marshall Hall’s textbook (e.g., Theorem 5.1.2
of [14]); we give a proof—in terms of our language—for ease of reading this article.

Proof. Again, it suffices to show that there is a perfect matching W1 such that W1(i, j) ≤ W (i, j) for all i, j,
and then to prove the above theorem by induction on r.

Consider the bipartite graph, G = (V,E), V = VL q VR with VL = VR = Z, and where the number of edges
from i ∈ VL to j ∈ VR is W (i, j). Let V be enumerated as v1, v2, . . . . Again, |Γ(V ′)| ≥ |V ′| since G is r-regular
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on both sides, and hence the augmenting path technique to prove Hall’s theorem shows that for any m there
is a matching Gm = (Vm, Em) ⊂ G, meaning that each vertex of Vm is adjacent via Em to exactly one other
vertex of Vm, with the property that {v1, . . . , vm} ⊂ Vm.

Now we use G1, G2, . . . to build a perfect matching G′ ⊂ G. Namely, since v1 ⊂ Vm for m ≥ 2, and since v1

is adjacent to at most r-vertices in G, there is an (infinite) subsequence of G1, G2, . . . in which v1 is adjacent
to some fixed vertex of V ; next, we choose a further infinite subsequence in which v2 is adjacent to some fixed
vertex of V ; we similarly apply this process to v3, v4, . . .. This gives a fixed matching defined on v1, v2, . . ., and
therefore on all of V . Hence, we get a bijection π1 : Z → Z such that for all i ∈ Z, W (i, π1(i)) ≥ 1. Hence, we
take W to be the weight associated with π1.

3.2 Main Lemmas about Weights Z2 → Z as an Alternating Sum of Perfect Match-
ings

In this subsection, we prove that any slowly growing Riemann function has a weight that can be written as the
alternating sum of perfect matchings. It will be convenient to prove a more general result, namely Lemma 3.1
below.

Definition 3.3. Let r ∈ Z. By an r-regular weight we mean a function W : Z2 → Z such that:

1. W is initially and eventually zero;

2. each row sum and each column sum of W equals r;

3. for some C ∈ N, for all d ∈ Z2 we have |W (d)| ≤ C.

The rest of this subsection is devoted to proving the following lemma.

Lemma 3.1. Let r ∈ Z, and let W be a r-regular weight. Then for some ` ∈ N we may write

W = (W1 +W2 + · · ·+W`)− (W̃1 + · · ·+ W̃`−r)

where W1, . . . ,W` and W̃1, . . . , W̃`−r are perfect matchings. Moreover, if W is p-periodic, then we may take
each Wi and W̃i to be p-periodic.

Lemma 3.1 is immediate if there exists an a ∈ Z, such that W (d) = 0 whenever deg(d) 6= a, for then we
must have W (d) = r whenever deg(d) = a. It will be helpful to introduce some definitions and notation related
to this simple observation.

Definition 3.4. For b ∈ Z, the perfect matching in degree b, denoted Wb, refers to the perfect matching given
by

Wb(d) =

{
1 if deg(d) = b, and
0 otherwise.

(24)

Hence, each Wb is 1-periodic (and any perfect matching that is 1-periodic is of this form).

Definition 3.5. Let W : Z2 → Z be any function. The support of W is the set of d ∈ Z2 such that W (d) 6= 0.
If a, b ∈ Z with a < b, we say that W is supported in degrees a through b if the support of W is a subset of
those d ∈ Z2 with a ≤ deg(d) ≤ b.

Lemma 3.2. Let W be an r-regular weight for some r ∈ Z, and say that there exists an a ∈ Z such that W is
supported in degrees a and a+ 1. Then for some c ∈ Z we have

W (d) =

 c if deg(d) = a,
r − c if deg(d) = a+ 1, and
0 otherwise.

Moreover, W can be written as a difference of a sum of perfect matchings, each of which equals either Wa or
Wa+1 with notation as in (24).

Proof. Let W (0, a) = c. Then W (0, a + 1) = W (1, a) = r − c, given that the 0-th column sum and a-th row
sum of W both equal r. Similarly, W (1, a−1) = W (−1, a+ 1) = c. It then follows by induction on m = 2, 3, . . .
that W (m, a−m) = W (−m, a+m) = c and W (m, a−m+ 1) = W (−m, a+m+ 1) = r − c.

For the second claim, we have
W = cWa + (r − c)Wa+1; (25)

if r, c − r are both non-negative, then (25) expresses W as a sum of r perfect matchings; otherwise (25)
expresses W as a difference of two sums of perfect matchings (since r ≥ 0, and hence at least one of r, c− r is
non-negative).
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To prove Lemma 3.1 we will use induction on b − a where W is supported on elements of degrees between
a and b. The discussion above deals with the cases where b = a or b = a+ 1. Let us explain the inductive step.
For this, it will be helpful to introduce the following notation: first, let U : Z2 → Z be the function

U(d) =

 1 if d = (0, 0), (1, 1),
−1 if d = (1, 0), (0, 1), and
0 otherwise.

[For intuition, note that all row and columns sums of U equal 0.] For a doubly-infinite sequence S =
{. . . , s−1, s0, s1, . . .} of integers, we use the notation US to denote the function Z2 → Z given by

US(d) =
∑
i∈Z

U
(
d + (i,−i)

)
si (26)

[for intuition, it may help to observe that US is the convolution of U with the function supported in degree 0
taking (i,−i) to s−i]. Hence we have US is supported on d of degrees 0, 1, 2, and for all a ∈ Z, US(a,−a) = sa.
Clearly, all row and column sums of U are zero, and hence the same holds of US .

Here is the essential ingredient in our inductive step.

Lemma 3.3. Let S = {. . . , s−1, s0, s1, . . .} be any doubly-infinite sequence of elements of {0, 1}. Then US
(as in (26)) can be written as the difference of a sum of perfect matchings supported in degrees 0 through 2.
Furthermore, if for some p ∈ N we have sa+p = sa for all a ∈ Z, then the perfect matchings in the sums can be
taken to be p-periodic.

Proof. First, consider the lemma in the case where S is not assumed to be periodic, in the special case where
for all a ∈ Z with a odd we have sa = 0; let us prove the lemma in this situation. Let W1 be as (24) and let W
be given as follows: for all t ∈ Z

1. if s2t = 1, W (2t,−2t) = W (2t+ 1,−2t+ 1) = 1;

2. if s2t = 0, W (2t+ 1,−2t) = W (2t,−2t+ 1) = 1;

3. all other values of W not specified above are zero.

We easily check that:

1. W and W1 are perfect matchings;

2. W,W1 are supported in degrees 0 through 2;

3. we have W −W1 = US .

Hence, this proves the lemma in this special case of S.
We may similarly show the case where for all a ∈ Z with a even, we have sa = 0 (i.e., by translating the

construction in the last paragraph by (1,−1)).
In general we can write S = Seven +Sodd (where + means adding the sequences element-by-element), where

Seven = (. . . , s−2, 0,s0, 0, s2, 0 . . .)

Sodd = (. . . , 0, s−1,0, s1, 0, s3, . . .)

As such, we have
US = USeven

+ USodd
,

and now we can write USeven
and USodd

each as the difference of two perfect matchings. This proves the lemma
in the non-periodic case.

Next, consider the case when S is p-periodic.
If p = 1, then sa are all 1 or 0; if they are all 0 then US is identically zero, and otherwise US = W0−2W1+W2

with notation as in (24).
Hence, we may assume p ≥ 2. If p is even, then we can write US as above, and notice that Seven and Sodd

are p-periodic. Then it follows that when we write USeven = W −W1 as above, both W and W1 are p-periodic
(W1 is 1-periodic), and similarly for USodd

. This solves the lemma in this case.
The only case that remains is when S is p-periodic when p ≥ 3 is odd (in which case Seven, Sodd are not

p-periodic). In this case, we take a similar approach, being careful to have the matchings all p-periodic as
follows: first, consider the special case of S for which sa = 0 whenever a ∈ Z is not divisible by p. For each
t ∈ Z we let W be the following perfect matching:

1. if spt = 1, W (pt,−pt) = W (pt+ 1,−pt+ 1) = 1;
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2. if spt = 0, W (pt+ 1,−pt) = W (pt,−pt+ 1) = 1;

3. for all a not equal to pt or pt+ 1 for some t, i.e., with a mod p 6= 0, 1, (where a mod p is meant as taking
a value between 0 and p− 1), W (a, 1− a) = 1;

4. all other values of W not specified above are zero.

We then have that W is p-periodic, and US = W −W1. This solves the lemma in this case.
Similarly, we solve the lemma in the case for some i = 1, . . . , p − 1 we have sa = 0 for all a ∈ Z with

a mod p 6= i.
For the general case of S p-periodic with p ≥ 3 odd, we write

S = S0 + · · ·+ Sp−1,

where for i = 0, . . . , p−1, (Si)a = 0 if a mod p 6= i. Then we write each USi
as a difference of periodic matchings

supported in degrees 0 through 2, and use

US = US0
+ · · ·+ USp−1

to write US as the difference of sum of p perfect matchings, each p-periodic.

Proof of Lemma 3.1. First, let us prove the lemma in the case where W attains only non-negative values.
Let us prove the lemma in this case by induction on m = 0, 1, . . . for all W supported in degrees a through

a + m. The cases m = 0, 1 are given in Lemma 3.2. Now consider the inductive step, where the lemma holds
for m− 1 for some m ≥ 2 and we wish to prove it for m. By translating W , we may assume that it is supported
in degrees 0 through m. Let

C = max
t∈Z

W (t,−t).

Now let us prove our desired inductive step, i.e., that the lemma holds for W supported in degrees 0 through
m, by using induction on C = 0, 1, . . . For C = 0, it follows that W is supported in degrees 1 through m, and
hence by translation we can reduce the theorem to the case m− 1.

Now, say the claim holds for some value of m and C ≥ 0, and say that W (t,−t) ≤ C + 1. Let S =
{. . . , s−1, s0, s1, . . .} be given by

st = min
(
1,W (t,−t)

)
.

Then st ∈ {0, 1} for all t, and if W is p-periodic then st+p = st for all t ∈ Z. According to Lemma 3.3 we
can find a difference of sums of perfect matchings supported in degrees 0 through 2—all p-periodic if W is
p-periodic—whose value at (a,−a) equal sa. Subtracting this difference of sums from W we get W ′ where
W ′(t,−t) = W (t,−t)− st, to which we can apply the inductive claim.

This proves the lemma assuming W (d) ≥ 0 for all d. If W is supported in degrees a and b and is bounded
in absolute value by C ∈ N, then with notation in (24) we have

W ′ = W + C(Wa + · · ·+Wb)

attains only non-negative values for some C sufficiently large, and is an r′-fold matching for r′ = r+C(b−a+1).
Hence, we apply the lemma to W ′, and then subtract C(Wa + · · ·+Wb).

4 Diagrams, Betti Numbers, and Models for Riemann
Functions Whose Weight is a Perfect Matchings

In this section, we introduce our basic models and develop some of their properties. We will especially study
those related to Riemann functions f : Z2 → Z whose weight is a perfect matching; such functions have a number
of especially remarkable properties.

4.1 Conventions Regarding Linear Algebra: Cohomology, Betti Numbers, Fred-
holm Maps, and Direct Sums

In this subsection, we recall some basic concepts in linear algebra that we will need to compute the sheaf
invariants of interest to us. Our motivation is that the invariants of the sheaves that we use can be computed
as the kernel and the cokernel1 of an associated linear map.

1If τ : B → A is a linear map of vector spaces, the cokernel of τ is A/Image(τ).
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F(B1)

F(B2)

F(B3)

F(A1)

F(A2)

F(ρ1,1)

F(ρ2,2)

F(ρ3,1)

F(ρ3,2)

Figure 3: Our Diagrams

Let k be a field and τ : B → A a linear map of k-vector spaces B,A. For i = 0, 1 we define the i-th cohomology
group of τ to be, respectively

H0(τ)
def
= ker(τ), H1(τ)

def
= coker(τ),

and the i-th Betti number of τ to be bi(τ) = dimkH
i(τ); we say that τ is a k-Fredholm map, or simply Fredholm,

if both Betti numbers are finite, and if so, we define the Euler characteristic of τ (also known is its index) to be

χ(τ) = b0(τ)− b1(τ);

if exactly one of b0(τ) and b1(τ) is infinite, we may also define χ(τ) as ±∞ accordingly.
[Hence the i-th cohomology group and i-th Betti number of τ is the usual notion when we view τ as a chain

· · · → 0→ B → A→ 0→ · · ·

with B positioned in degree 0.]
If {Bi}i∈I is a family of k-vector spaces indexed on a set I, we define its direct sum, denoted ⊕i∈IBi as

usual, i.e., the vector space of tuples {bi}i∈I such that each bi ∈ Bi and all but finitely many of the bi are zero.
If τi : Bi → Ai is a family of k-linear maps of vector spaces indexed on i ∈ I, we define the direct sum of {τi}i∈I
as usual, i.e., as the map ⊕

i∈I
τi :

⊕
i∈I

Bi →
⊕
i∈I

Ai;

we easily check that for j = 0, 1 we have a simple isomororphism

Hj

(⊕
i∈I

τi

)
'
⊕
i∈I

Hj(τi),

and hence Betti numbers

bj
(⊕
i∈I

τi

)
=
∑
i∈I

bj(τi),

so that if all the τi are Fredholm maps, where all but finitely many of the τi have both Betti numbers equal to
zero, we get a finite and well-defined Euler characteristic

χ

(⊕
i∈I

τi

)
=
∑
i∈I

χ(τi).

4.2 k-Diagrams: Diagrams of k-Vector Spaces

Our models of Riemann functions will be k-linear maps τ : B → A, which are built from one fixed type of
“diagram” of vector spaces, depicted in Figure 3 and which we now make precise.

Definition 4.1. Let k be a field. By a diagram of k-vector spaces, or simply a k-diagram we mean a collection,
F , of data consisting of:

1. five k-vector spaces,
F(B1),F(B2),F(B3),F(A1),F(A2)

called the values of F ; and

2. k-linear maps F(ρi,j) : F(Bi) → F(Aj) for the pairs (i, j) where (i, j) ∈ {(1, 1), (2, 2), (3, 1), (3, 2)} (i.e.,
F(ρ1,2) and F(ρ2,1) don’t exist); we call the F(ρij) the restriction maps of F .
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To this diagram, we associate the vector spaces

F(B) = F(B1)⊕F(B2)⊕F(B3), F(A) = F(A1)⊕F(A2),

and the linear transformation F(∂) : F(B)→ F(A), called the differential of F , given by

F(∂)(b1, b2, b3) =
(
F(ρ1,1)(b1)−F(ρ3,1)(b3),F(ρ2,2)(b2)−F(ρ3,2)(b3)

)
, (27)

and define the zeroth and first cohomology groups of F to be, respectively

H0(F)
def
= ker

(
F(∂)

)
, H1(F)

def
= coker

(
F(∂)

)
,

i.e., the kernel and cokernel of F(∂). If (b1, b2, b3) ∈ H0(F), and aj = F(ρjj)bj for j = 1, 2, then the tuple
(b1, b2, b3, a1, a2) satisfies F(ρij)bi = aj whenever F(ρij) is defined, and we refer to (b1, b2, b3, a1, a2) as a global
section of F .

Convention 4.1. When we speak of a k-vector space or a k-diagram without prior reference to k, we understand
k to be an arbitrary field.

Note that if (b1, b2, b3, a1, a2) is a global section, then (b1, b2, b3) ∈ H0(F); this therefore gives a bijection
between global sections of F and H0(F), i.e., the kernel of the differential F(∂) of F . [Global sections tend to
be conceptually more useful, but equivalent descriptions are useful in certain computations; we will later give
another equivalent description of global sections as elements of Hom(k,F).]

In Section 10, we will explain that our choice of F(∂) and H1(F) are not canonical, but involve a choice of
basis for each of two one-dimensional vector spaces; see the proof of Lemma 10.1 and the remark after its proof;
however, this choice does not affect H0(F), i.e., the kernel of F(∂).

4.3 Conventions on Sets, Multisets, Induced Vector Spaces, and MW,d for Non-
Negative Weights

Definition 4.2. Let k be a field. If S is a set, we use k⊕S to denote the k-vector space that is the direct sum
of one copy of k for each element of S, i.e., whose elements are collections {vs}s∈S with vs 6= 0 for at most
finitely many values of s; for s ∈ S, we use es to denote the vector that is 1 in component s and 0 elsewhere.
If T is another set and α : S → T a map of sets, then α gives rise to a unique k-linear transformation, denoted
k⊕α, from k⊕S → k⊕T taking es to eα(s). If S ⊂ T , then the inclusion map ι : S → T gives an injection k⊕ι

which we call the inclusion map (of k⊕S to k⊕T ).

In the above one, easily checks that if α is an injection, surjection, or bijection, then the same is true of
k⊕α. Next, we fix a convention for multisets (any reasonable convention would suffice).

Definition 4.3. Let S1, S2 be sets, and W : S1×S2 → Z≥0 ∪{∞}. The multiset on S1×S2 with multiplicities
W refers to the set

Multi(W ) = {(s1, s2, i) ∈ S1 × S2 × N | i ≤W (s1, s2)}, (28)

where if W (s1, s2) = ∞, then we view all i as satisfying i ≤ W (s1, s2). We refer to the maps Multi(W ) → S1

and Multi(W )→ S2 taking (s1, s2, i) to, respectively, s1 and s2, as, respectively, the first and second projections.
We use the notation k⊕W to denote k⊕Multi(W ), which comes with maps

proji : k
⊕W → k⊕Si (29)

induced by the first and second projections. The support of W is the set of (s1, s2) ∈ S1 × S2 such that
W (s1, s2) ≥ 1. When W takes on only the values {0, 1}, then with mild abuse of notation we may identify
Multi(W ) with its support, which is a subset of S1 × S2, since in this case W is determined by its support.

Example 4.1. If W : Z2 → Z is a perfect matching, and π : Z → Z is its associated bijection, then k⊕W has
one copy of k for each pair (a1, π(a1)) ∈ Z2 varying over all a1 ∈ Z. In this case we may identify k⊕W with
k⊕Z, where the first projection is the identity map on k⊕Z, and the second projection is the map k⊕Z → k⊕Z,
takes ea1 to eπ(a1). Hence both maps (29) are isomorphisms.

Definition 4.4. Let k be a field, W : Z2 → Z≥0 ∪ {∞}, and d ∈ Z2. We use MW,d to denote the following
k-diagram (Definition 4.1):

1. for i = 1, 2, MW,d(Bi) = k⊕Z≤di , MW,d(Ai) = k⊕Z, ρi,i is the inclusion,

2. B3 = k⊕W , and for j = 1, 2, ρ3,j are the projection maps (as in (29)).
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MW,d(B1) = k⊕Z≤d1

MW,d(B2) = k⊕Z≤d2

MW,d(B3) = k⊕W

k⊕Z =MW,d(A1)

k⊕Z =MW,d(A2)

ρ1,1 = inclusion

ρ2,2 = inclusion

ρ3,1

ρ3,2

Figure 4: The k-Diagram MW,d.

We depict these k-diagrams in Figure 4.
The cohomology groups of MW,d are therefore the kernel and cokernel of the maps

τW,d =MW,d(∂) : k⊕Z≤d1 ⊕ k⊕W ⊕ k⊕Z≤d2 → k⊕Z ⊕ k⊕Z

given as the map
(b1, b3, b2) 7→

(
b1 − kpr1(b3), b2 − kpr2(b3)

)
,

where pri denotes the i-th projection k⊕W → k⊕Z.

4.4 The Euler Characteristic of MW,d as a Function of d and Riemann Functions

Before computing the Betti numbers of MW,d for specific W of interest, we wish to point out some general
properties of their Betti numbers and Euler characteristics. In particular, we will prove that if for some d and
W we have that χ(MW,d) is well-defined, i.e., at least one of the Betti numbers of MW,d is finite, then

χ(MW,d+e1
) = χ(MW,d+e2

) = χ(MW,d) + 1. (30)

This is an easy consequence of the following lemma.

Lemma 4.1. Let τ : B → A be a linear map of k-vector spaces, and let B′ ⊂ B be a subspace of codimension
one, and let τ ′ = τ |B′ , i.e., the restriction of τ to B′. Then if either χ(τ) or χ(τ ′) is well defined, then so is
the other, and

χ(τ) = χ(τ ′) + 1. (31)

In more detail, either
b0(τ) = b0(τ ′) + 1 and b1(τ) = b1(τ ′) (32)

or
b0(τ) = b0(τ ′) and b1(τ) = b1(τ ′)− 1, (33)

where we allow for these Betti numbers to equal ∞, in which case ∞± 1 is taken to ∞.

Proof. The proof of this lemma is straightforward: since B′ has codimension 1 in B, ker(τ ′) = ker(τ) ∩B′ has
either codimension 1 or 0 in ker(τ); we easily verify that codimension 1 implies (32) and codimension 0 implies
(33). Both cases (32) and (33) imply (31).

Corollary 4.1. Let W : Z2 → Z≥0. Then for any d ∈ Z2 and i = 1, 2, we have that the conclusions of
Lemma 4.1 hold for τ =MW,d+ei

(∂) and τ ′ =MW,d(∂). In particular, for any d and i = 1, 2 we have

b0(MW,d) ≤ b0(MW,d+ei) ≤ b0(MW,d) + 1 (34)

(which makes sense if these Betti numbers equal +∞, in which case the above reads +∞ ≤ +∞ ≤ +∞) and

b1(MW,d) + 1 ≥ b1(MW,d+ei
) ≥ b1(MW,d).

In particular, if at least one of the Betti numbers of MW,d is finite, or one of MW,d+e1 or MW,d+e2 , then (30)
holds.

Applying this corollary repeatedly we get the following result.

Theorem 4.1. Let W : Z2 → Z≥0 be a function such that χ(MW,d) is well defined for some d ∈ Z2. Then for
all d′ ∈ Z2, χ(MW,d′) is well defined, and

χ(MW,d+d′) = χ(MW,d) + deg(d′); (35)
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equivalently, for all d ∈ Z2 we have

b0(MW,d)− b1(MW,d) = χ(MW,d) = deg(d) + C, where C = χ(MW,0). (36)

Furthermore, if for deg(d) sufficiently small we have b0(MW,d) = 0, and for deg(d) sufficiently large we have
b1(MW,d) = 0, then f(d) = b0(MW,d) is a slowly growing Riemann function, and for any K we have

b1(MW,d) = f∧K(K− d).

Proof. Applying Corollary 4.1 repeatedly we see that if χ(MW,d) is well defined, then (35) holds for all d′ ≥ d,
and in particular for a1, a2 sufficiently large we have

χ(MW,a1e1+a2e2
) = χ(MW,d) + a1 + a2 − d1 − d2. (37)

Then applying Corollary 4.1 repeatedly to a = (a1, a2) we have that for all d′ ≤ a

χ(MW,d′) = χ(MW,a1e1+a2e2
) + d′1 + d′2 − a1 − a2,

which, in view of (37), equals the left-hand-side of (35). Hence (35) holds for all d′. Applying this with d′

replaced with an arbitrary d′′ ∈ Z2 and subtracting yields

χ(MW,d′′)− χ(MW,d′) = deg(d′′ − d′),

for all d′′,d′, and setting d′ = 0 and d′′ = d yields (36).
Setting f(d) = b0(MW,d), we have that if f(d) = 0 for deg(d) sufficiently small, then f is intially zero;

according to Corollary 4.1, f(d) is finite for all d and, by (34), it is slowly growing; if b1(MW,d) = 0 for deg(d)
large, then for such d we have

f(d) = b0(MW,d) = b0(MW,d)− b1(MW,d) = deg(d) + C,

and hence f(d) = b0(MW,d) is a Riemann function. It is slowly growing by (34). In view of, (13), for any
K ∈ Z2 we have

f(d)− f∧K(K− d) = deg(d) + C

and so
f∧K(K− d) = b1(MW,d).

[In terms of sheaf theory, the above lemmas and corollaries express the fact that the two k-diagrams MW,d

and MW,d+ei
fit into a short exact sequence with a skyscraper sheaf supported at Bi whose value is k; see

Subsection 10.9.]

4.5 Simple Examples of MW,d Betti Number Bounds

We remark that without assumptions on W , the cohomology groups and Betti numbers of MW,d may not be
finite (or particularly interesting).

Example 4.2. Let W = 0. Then the kernel of τW,d =MW,d(∂) is zero, and its cokernel can be identified with

k⊕Z≥d1+1 ⊕ k⊕Z≥d2+1 ,

which is infinite-dimensional. Hence b0(MW,d) = 0, b1(MW,d) = +∞.

Example 4.3. We easily see that if W (d) = 2 for some d ∈ Z2, then Multi(W ) contains some elements
of the form (d1, d2, 1), (d1, d2, 2), and if b3 = e(d1,d2,2) − e(d1,d2,1), then (0, b3, 0) ∈ ker(τW,d). Similarly if
W (d1, d2) ≥ m for some m ≥ 3, with b3 = e(d1,d2,m) − e(d1,d2,1) we see that

b0(MW,d) ≥
∑

d′∈Z2

(
W (d′)− 1

)
. (38)

Example 4.4. We say that s1 ∈ Z is isolated in the first component of W if W (s1, s2) = 0 for all s2; we
similarly define when an s2 ∈ Z is isolated from the second component of W . If s1 ≥ d1 + 1, then all elements
of the image of τW,d have a zero coefficient in the es1 component in the MW,d(A1) summand of the codomain
(or range) of τW,d; similarly if s2 ≥ d2 + 1 is missing form the second component of W . It follows that

b1(MW,d) ≥
∣∣Iso1,≥d1+1

∣∣+
∣∣Iso2,≥d2+1

∣∣ (39)

where Iso1,≥d1+1 is the set of isolated s1 in the first component of W with s1 ≥ d1 + 1, and similarly for
Iso2,≥d2+1.

Example 4.5. Let W be given as W (d1, d2) = 2 if d1 = 0, and W (d1, d2) = 0 if d1 6= 0. Then the bounds (38)
and (39) show that b0(MW,d) = b1(MW,d) = +∞.
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4.6 The Betti Numbers of MW,d for Perfect Matchings

In the case W : Z2 → {0, 1} is a perfect matching, it is easy to determine its Betti numbers.

Theorem 4.2. Let W : Z2 → Z be a perfect matching. Then

1. b0(MW,d) equals the number of a ∈ Z2 such that W (a) = 1 and a ≤ d, and hence

f(d)
def
= b0(MW,d) = (sW )(d);

2. more precisely, H0(MW,d) has a basis consisting of(
ea1 , e(a1,a2), ea2

)
∈ ker

(
MW,d(∂)

)
s.t. a ≤ d; (40)

3. b1(MW,d) equals the number of a ∈ Z2 such that W (a) = 1 and a ≥ d + 1; and

4. more precisely, if π is the bijection associated to W , then H1(MW,d) has a basis consisting of the images
in H1(MW,d) of

ea1 ∈MW,d(A1) s.t. a1 ≥ d1 + 1, π(a1) ≥ d2 + 1. (41)

In particular bi(MW,d) is finite for all i = 0, 1 and all d ∈ Z2, and is zero when i = 0 and deg(d) is sufficiently
small or when i = 1 and deg(d) is sufficiently large; furthermore for some C ∈ Z we have

χ(MW,d) = deg(d) + C,

and, moreover, C = χ(MW,0). Hence for any K ∈ Z2 and L = K + 1 we have

b1(MW,d) = f∧K(K− d) = (sW ∗L)(K− d).

Proof. Let us begin by proving claims (1)—(4) above. Note that (2) implies (1), and (4) implies (3), so it
suffices to prove (2) and (4). The proofs of (2) and (4) straightforward; let us begin with (2).

To prove (2), we note that MW,d(B3) = k⊕W , so the vectors(
ea1 , e(a1,a2), ea2

)
∈MW,d(B) =MW,d(B1)⊕MW,d(B3)⊕MW,d(B2)

ranging over all a1, a2 such that W (a1, a2) = 1 are linearly independent in MW,d(B) by considering merely
their MW,d(B3) component. Consider an element

(b1, b3, b2) ∈ ker
(
MW,d(∂)

)
;

then
b3 =

∑
W (a1,a2)=1

e(a1,a2)ca1,a2

for some ca1,a2 ∈ k; the condition that (b1, b3, b2) lies in the kernel is equivalent to

b1 =
∑

W (a1,a2)=1

ea1ca1,a2 ∈MW,d(B1) = k⊕Z≤d1 , b2 =
∑

W (a1,a2)=1

ea2ca1,a2 ∈MW,d(B2) = k⊕Z≤d2 ,

which holds if and only if a1 ≤ d1 and a2 ≤ d2 whenever ca1,a2 6= 0. Hence each such triple (b1, b3, b2) is a
unique linear combination of the vectors in (40).

To prove (4), since MW,d(ρ31),MW,d(ρ32) are isomorphisms, it follows that

V =
(
MW,d(A1)⊕MW,d(A2)

)
/Image

(
MW,d(B3)

)
has (ea1 , 0) as a basis, where a1 ranges over all of Z. The image of MW,d(B1) in V is precisely the span of all
(ea1 , 0) with a1 ≤ d1, and hence

V ′ = V/Image
(
MW,d(B1)

)
has a basis consisting of all the (ea1 , 0) with a1 ≥ d1 + 1; finally the image of MW,d(B2) in V ′ is precisely the
span of all (0, ea2) with a2 ≤ d2, each of which equals (−ea1 , 0) for the unique a1 with W (a1, a2) = 1. Hence

H1(F) = V ′/Image
(
MW,d(B2)

)
has a basis as claimed in (41).

This establishes (1)–(4) of the theorem. Next we prove the rest of the theorem. Since W is a perfect
matching, by definition it is initially and eventually zero; hence the number of a ≤ d with W (a) = 1 is zero
for deg(d) sufficiently small, and for such f(d) = b0(d) = 0; similarly, for deg(d) sufficiently large the number
of a ≥ d + 1 with W (a) = 1 is zero, and for such d we have b1(d) = 0. The remaining claims follow from
Theorem 4.1 and the fact that mf∧K = (−1)2W ∗L = W ∗L (by Theorem 2.1).
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4.7 The Betti Numbers of MW,d for General W via an Associated Graph

One can give a description of the Betti numbers of MW,d for any W in terms of a graph associated to W and
d. This formula is foundational and seems interesting, but it is independent of the rest of this article.

Given W : Z2 → Z≥0 ∪ {∞} and d ∈ Z2 we associate the following graph, which may have multiple edges
and self-loops, G = Graph(W,d), which one can describe in two ways: first,

1. one forms the bipartite graph G′ whose vertex set is Z × {1, 2} and whose edge set has W (s1, s2) edges
joining (s1, 1) with (s2, 2);

2. one then takes G to be the graphs obtained from G′ by collapsing the vertices Z≤d1 ×{1} and Z≤d2 ×{2}
into a single vertex, v0.

In particular, G is not generally bipartite, and has r self-loops at v0 (and no self-loops about any other vertex),
where

r =
∑

(s1,s2)≤d

W (s1, s2);

each such self-loop adds 1 to the first Betti number of G.
The second way to describeG is more explicit: namely, G is the graph with vertex set VG = v0qVfirstqVsecond

2

with Vfirst = Z≥d1+1 and Vsecond = Z≥d2+1, and whose edge set can be identified with EG = Multi(W ) (as
in (28)), where each element (s1, s2, i) ∈ Multi(W ) creates:

1. an edge joining s1 ∈ Vfirst and s2 ∈ Vsecond if s1 ≥ d1 + 1 and s2 ≥ d2 + 1;

2. a self-loop about v0 if s1 ≤ d1 and s2 ≤ d2;

3. an edge joining s1 ∈ Vfirst and v0 if s1 ≥ d1 + 1 and s2 ≤ d2; and

4. an edge joining v0 and s2 ∈ Vsecond if s1 ≤ d1 and s2 ≥ d2 + 1.

It will be convenient to write G as the union of its connected components Gi = (Vi, Ei), where i ranges over
{0, . . . , `} if G has finitely many connected components, or i ranging over Z≥0 otherwise; we will also set G0 to
be the connected component of v0.

We need to recall some convenient definitions of the Betti numbers of an infinite graph. If G = (V,E) is a
graph (with V,E not necessarily finite), then one can define its incidence matrix, ιG, as usual, by orienting each
edge arbitrarily, so that ιG is a map k⊕E → k⊕V , and then b0(G), b1(G) are, respectively, the dimensions of
the cokernel and kernel of ιG. This will be useful to us. However, it will also be conventient to define the Betti
numbers as follows: b0(G) is the number of connected components, i.e., equivalence classes of vertices, where
two vertices are equivalent if they are connected by a walk of finite length. For each connected component, we
choose a spanning tree (by fixing a vertex, r as the root of the tree, then adding one edge joining r to each of
its neighbours, then one edge for each vertex of distance 2 to r, etc.). This gives a spanning forest of G. Then
b1(G) is the cardinality of set of edges of G that don’t lie in the spanning forest.

Theorem 4.3. Let W : Z2 → Z≥0 ∪ {∞} and d ∈ Z2. Let G = Graph(W,d). Then

b1(MW,d) = b0(G)− 1

b0(MW,d) = b1(G).

We remark that it is interesting how each Betti number of MW,d can be inferred from the opposite Betti
number of G. We also remark that if W is a perfect matching, then Theorem 4.2 is a simpler description of
the Betti numbers of MW,d. Hence, the seeming simplicity of the above theorem is not necessarily the most
practical way to describe the Betti numbers of MW,d.

Proof. Let τ =MW,d(∂), which one can view as a map

τ : k⊕
(
Z≤d1

q Z≤d2
q Multi(W )

)
→ k⊕(Z q Z).

In the notion introduced after the definition of G, we saw that G decomposes into its connected components
Gi = (Vi, Ei) where i ranges over I, where I equals {0, . . . , `} or Z≥0, and G0 is the component containing v0.
Then Multi(W ) is partitioned into multisets Ei with i ∈ I; setting

E′0 = Z≤d1 q Z≤d2 q E0,

2We assume some reasonable convention for the meaning of the disjoint union q, which is a limit and hence only defined up to
unique isomorphism; e.g., for sets A1, . . . , As, the set A1 q . . .qAs refers to the union

⋃
i Ai × {i}.
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we have that
Z≤d1 q Z≤d2 q Multi(W ) = E′0 ∪

⋃
i∈I\{0}

Ei

where we identify Ei ⊂ Multi(W ) with the subset Multi(W ) as it lies in Z≤d1 q Z≤d2 q Multi(W ). Similarly
setting

V ′0 =
(
Z≤d1 q Z≤d2

)
∪ (V0 \ {v0}) (which is a subset of Zq Z),

we have
Zq Z = V ′0 ∪

⋃
i∈I\{0}

Vi.

It follows that τ factors as a map

τ =
⊕
i∈I

τi

where
τ0 : k⊕E

′
0 → k⊕V

′
0

and for i 6= 0,
τi : k

⊕Ei → k⊕Vi .

Note that for i 6= 0, τi sends (a1, a2, j) ∈ Ei ⊂ Multi(W ) to (ea1 , ea2); since Gi is bipartite, b0(τi), b
1(τ) are

the same as b0, b1 of the map sending (a1, a2, j) to (ea1 ,−ea2), which is an incidence matrix of Gi. Hence for
j = 0, 1,

bj(τ) =
∑
i∈I

bj(τi) = bj(τ0) +
∑
i>0

b1−j(Gi).

Since
b1−j(G) =

∑
i∈I

b1−j(Gi),

it remains to show that b1(τ0) = b0(G)− 1 = 0 and b0(τ0) = b1(G0).
We claim that τ0 is surjective; hence for a ∈ V ′0 , we need to show that the standard basis vector ea is in the

image of τ ; this is clear for a ∈ Z≤d1 q Z≤d2 . If the distance from a to v0 is 1, and a ∈ Vfirst, then for some
a′ ≤ d2 we have (a, a′) ∈ E0, and hence ea + ea′ ∈ Image(τ), and hence ea ∈ Image(τ); similarly if a ∈ Vsecond.
We then similarly get that ea ∈ Image(τ) if the distance from a to v0 equals 2, since then ea + ea′ ∈ Image(τ)
for some a′ of distance 1 to v0. We then argue the general case by induction on its distance to v0. Hence
b1(τ0) = 0.

Finally let us show that b0(τ0) = b1(G0). Let us give an isomorphism ker(τ0) → ker(ιG0
) where ιG0

is an incidence matrix of G0. To describe such an incidence matrix, we orient each w ∈ E0 arising from
(a1, a2, j) ∈ Multi(W ) as running from a1 to a2. Next note that τ0 is a map

τ0 : k⊕(Z≤d1
q Z≤d2

)∪E0 → k⊕(Z≤d1
q Z≤d2

)∪(V0\{v0}),

so each element of the domain of τ0 can be viewed as a pair (α, β) which refers to the element∑
u∈Z≤d1

q Z≤d2

α(u)eu +
∑
w∈E0

β(w)ew,

where α, β are functions that are zero for all but finitely many of their values. Since τ takes (α, 0) to∑
u∈Z≤d1

q Z≤d2

α(u)eu ∈ k⊕(Z q Z),

it follows that for each β there exists at most one α with (α, β) ∈ ker(τ0), and such an α exists precisely when∑
u=(a1,a2,`)∈E0,a1≥d1+1

β(u)ea1 = 0 =
∑

u=(a1,a2,`)∈E0,a2≥d2+1

β(u)ea2 . (42)

So we want to prove that the dimension of all β satisfying (42) equals b1(G0).
First consider the case where G0 = (V0, E0) is a tree: we claim that (42) forces β = 0, since if U ⊂ E0 is

the support of β and u′ ∈ U is an edge of maximum distance to v0, one vertex incident upon u′ is not incident
upon any other edge of U ′, which is a contradiction.

Next, consider the case that G0 is a tree (V0, T ) plus an edge u1: there exists a β as above with β(u1)
nonzero, using the unique cycle created by u1; since β can be increased by at most 1 with the addition of an
edge, it follows that the dimension of β satisfying (42) is exactly 1. Similarly, if we add another edge, u2, to
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F(B1)

F(B2)

F(B3)

F(A1)
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F(ρ1,1)

F(ρ2,2)

F(ρ3,1)

F(ρ3,2)

G(B1)

G(B2)

G(B3)

G(A1)

G(A2)

G(ρ1,1)

G(ρ2,2)

G(ρ3,1)

G(ρ3,2)

φ(B1)

φ(B2)

φ(B3)

φ(A1)

φ(A2)

F Gφ

Figure 5: A morphism of diagrams φ : F → G, depicted in thick lines

G0, the dimension of β satisfying (42) increases by 1, using any cycle created by u2; since it can increase by at
most 1, the dimension of such β is exactly 2. It similarly follows by induction on m, that if G0 is a tree plus m
edges, then the dimension of β satisfying (42) is exactly m. It follows by taking m = b1(G0), or letting m→∞
if b1(G0) =∞, that

b0(τ) = b1(G0).

5 Morphisms, Isomorphisms, and Direct Sum of k-Diagrams

For the rest of this article we will need to know when two k-diagrams are isomorphic and some other basic
properties of (the category of) k-diagrams.

5.1 Morphisms of k-Diagrams

Definition 5.1. Let F ,G be two k-diagrams. By a morphism φ : F → G we mean the data, φ, of linear maps
from each value of F to the corresponding value on G in a way that commutes with the restriction maps: i.e.,
φ consists of k-linear maps φ(Bi) : F(Bi)→ G(Bi) for i = 1, 2, 3 and φ(Aj) : F(Aj)→ G(Aj) for j = 1, 2 such
that G(ρij)φ(Bi) = φ(Aj)F(ρij) whenever F(ρij),G(ρij) exist (i.e., i = j or i = 3 and any j). For k-diagrams
F ,G we use Hom(F ,G) to denote the set of morphism F → G; if φ, φ′ ∈ Hom(F ,G) and α, α′ ∈ F, then one
can define αφ+ α′φ′ ∈ Hom(F ,G) to be the map that is the value-by-value linear combination, i.e., for P = Aj
or P = Bi, (

αφ+ α′φ′
)
(P ) = αφ(P ) + α′φ′(P );

this gives Hom(F ,G) the structure of a k-vector space.

We illustrate a morphism of k-diagrams in Figure 5.
To turn the set of k-diagrams into a category, we need to define the composition of morphisms.

Definition 5.2. Let φ1 : F → G and φ2 : G → H be two morphisms of k-diagrams. We define the composition
of φ1 followed by φ2, denoted φ2 ◦ φ1 or φ2φ1, to be the morphism F → H given by:

∀i = 1, 2, 3, (φ2φ1)(Bi) = φ2

(
φ1(Bi)

)
,

∀j = 1, 2, (φ2φ1)(Aj) = φ2

(
φ1(Aj)

)
.

We easily check that in the above definition, H(ρij)(φ2φ1)(Bi) = (φ2φ1)(Aj)F(ρij) whenever F(ρij),G(ρij)
exist (i.e., i = j or i = 3 and any j).

We remark that it is clear how to define the identity morphism, and hence Definition 5.2 endows the set of
k-diagrams with the structure of a category.3

3This category is none other than the category Hom(C,D) ( [1], Exposé I, 1.1.1, just below Definition 1.1) where C is a category
with 5 objects and D is the category of k-vector spaces. Since the category of k-vector spaces is an algebraic structure defined by
finite projective limits, Definitions 4.1, 5.1, and 5.2 are really a consequence of [1], Exposé I, Corollaire 3.2.
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b1 = 0
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b1 = 0
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k/B1,B2

b0 = 0
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Figure 6: The Diagram k and Related Diagrams: these are the four basic diagrams into which our MW,d

decompose as direct sums. Here we also include their Betti numbers (Subsection 4.1); the reason is that it is
important to remember that b0 and b1, respectively, come only from copies of k and k/B1,B2

, respectively. Hence
any k-diagram that decomposes into our four basic diagrams, such asMW,d, and has finite Betti numbers, must
therefore contain only finitely many copies of each of k, k/B1,B2

.

5.2 Constant and the Four Basic k-Diagrams

Let us describe some simple k-diagrams that we will use.

Definition 5.3. Let k be a field, and V a k-vector space. The constant k-diagram V , denoted V , refers to the
diagram whose values are all V , and whose restriction maps are the identity map on V .

In particular, k is the constant diagram whose values are k, viewed as a k-vector space.
Let us describe a number of k-diagrams closely related to the diagram k that we will use; we will collectively

refer to these k-diagrams as the four basic k-diagrams. Before giving the formal definition, we depict these
diagrams in Figure 6 by their values, all of which are either 0 or k, and all maps k → k are the identity maps.

Definition 5.4. Let k be a field. Consider the four possible diagrams, F , such that:

1. all values of F equal k or 0;

2. F(B3) = F(A1) = F(A2) = k;

3. all restriction maps k → k are the identity map.

We use the notation k to refer to F as above with F(B1) = F(B2) = k and call it the constant diagram k; for
i = 1, 2 we use the notation k/Bi

to refer the same diagram except with F(Bi) = 0; and we use the notation
k/B1,B2

to refer to the remaining such diagram, i.e., with F(B1) = F(B2) = 0. We refer to these four diagrams
collectively as the four basic k-diagrams.

5.3 Simple Examples of Morphisms with the Four Basic Diagrams

The reader who has never worked with k-diagrams or the related notion of presheaves and sheaves are encouraged
to consider morphisms between the four basic diagrams.

Example 5.1. As k-vector spaces, we have

Hom(k/B1
, k) ' k,

since for any α ∈ k there is a unique morphism φ : k/B1
→ k such that for P = A1, A2, B2, B3, φ(P ) : k → k

is multiplication by α (and for P = B1, B2, since k/B1,B2
(P ) = 0, φ(P ) is the trivial k-linear transformation

{0} → k). By contrast
Hom(k, k/B1

) ' {0},
since if φ : k → k/B1

, then
φ(B1) : k(B1)→ k/B1

(B1) = 0

must be the zero map, but then (recall the meaning of ρi,j from Definition 4.1)

k(B1)
k/B1

(ρ1,1)◦φ(B1)
−−−−−−−−−−−→ φ(A1)

must be the zero map, and since this must equal the map

k(B1)
φ(A1)◦k(ρ1,1)−−−−−−−−−→ φ(A1)
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this forces φ(A1) to be multiplication by 0. Following Figure 5 around (with F = k and G = k/B1
) we see that

φ must be everywhere zero.

[The experts will realize that the above example reflects the fact that there is a canonical inclusion FU → F
(and the fact there is typically no nonzero morphism F → FU ) where F is a sheaf on a topological space, U an
open subset, and FU is the extension by zero of the restriction of F to U ; we will explain this in more detail in
Subsection 10.8.]

For future use, it will be helpful to note the following calculations.

Example 5.2. Similar to Example 5.1, we see that

Hom(k/B1,B2
, k/B1,B2

) ' k,

and Hom(F , k/B1,B2
) = {0} for F = k, k/B1

, k/B2
.

Example 5.3. More generally, there is a partial order of our four basic k-diagrams: denoting each of these
diagrams by k/S where S is some subset of {B1, B2}, where we understand k/∅ = k. We have

Hom(k/S , k/S′) '
{
k if S ⊂ S′, and
{0} otherwise.

5.4 Example: Global Sections

If φ : F → G, then we easily see that φ gives maps F(B) → G(B) and F(A) → G(A) that induce maps
Hi(F)→ Hi(G) for i = 0, 1.

If F is any k-diagram, then if
φ ∈ Hom(k,F),

then φ(A1) takes the element 1 ∈ k to an element a1 ∈ A1, and similarly for φ(A2) and the φ(Bi); this gives a
tuple (b1, b2, b3, a1, a2), and the fact that the restrictions of k are the identity maps implies that (b1, b2, b3, a1, a2)
is a global section (Definition 4.1); conversely every global section (b1, b2, b3, a1, a2) determines a φ where
φ(Ai)1 = ai and φ(Bj)1 = bj which we easily check is an element of Hom(k,F). Hence, we see (as usual in
sheaf theory)

H0(F) ' Hom(k,F),

and we easily check that for any morphism φ : F → G the map H0(F)→ H0(G) is the same as the map

Hom(k,F)→ Hom(k,G)

given by composition of the morphism k → F with φ; this is a standard fact about global sections of F in sheaf
theory.

5.5 Isomorphisms and Direct Sums of k-Diagrams

We now give the notion of isomorphisms and direct sums for k-diagrams; later, in Subsection 10.2 we will explain
that these notions really result once one specifies what is meant by a k-diagram and a morphism of k-diagrams.

Definition 5.5. A morphism φ : F → G of k-diagrams is an isomorphism if all the φ(Aj) and φ(Bi) are
isomorphisms.

This is equivalent to saying that there exists an inverse morphism ν : G → F such that φν is the identity on
G (i.e., all the φν(Aj) and φν(Bi) are the identity maps) and νφ is the identity morphism on F .

Definition 5.6. Let L be a set and for each ` ∈ L, say that we are given a k-diagram, F`. The direct sum of
{F`}`∈L refers to the k-diagram denoted ⊕

`∈L

F`

whose values at the Aj (for j = 1, 2) are ⊕
`∈L

F`(Aj),

and similarly for the values at the Bi, and similarly the restriction maps are the direct sums of those of the F`.
Similarly, if for each ` ∈ L we are given a morphism φ` of k-diagrams, the morphism ⊕`∈Lφ` is the morphism
of k-diagrams ⊕`∈LF` to ⊕`∈LG` given by direct sum of the φ`.
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We easily check that all the constructions in Definition 4.1 commute with taking direct sums. In particular,
for any direct sum {F`}`∈L we have (⊕

`∈L

F`

)
(∂) =

⊕
`∈L

F`(∂),

and for j = 0, 1 we have

Hj

(⊕
`∈L

F`

)
=
⊕
`∈L

Hj(F`)

and taking dimensions we have

bj

(⊕
`∈L

F`

)
=
∑
`∈L

bj(F`).

6 Sums of MW,d and Indicator k-Diagrams

The main point of this section is to prove the following theorem.

Theorem 6.1. Let W1, . . . ,Ws and W̃1, . . . , W̃s be perfect matchings Z2 → Z such that

W1 + · · ·+Ws = W̃1 + · · ·+ W̃s.

Then for any d we have
MW1,d ⊕ · · · ⊕MWs,d 'MW̃1,d

⊕ · · · ⊕MW̃s,d
.

The proof will be given at the end of this section, i.e., after Proposition 6.3 and its proof.
Moreover, we will prove this theorem is true in a very strong sense: namely, if W = W1 + · · ·+Ws, then the

direct sum
MW1,d ⊕ · · · ⊕MWs,d

is isomorphic to a sum, I⊕Wd of what we call indicator diagrams, that can be inferred from W alone, without
reference to the W1, . . . ,Ws. This will provide additional intuition regarding Theorem 6.1.

6.1 Example: MW,d as a Direct Sum of Indicator Diagrams

The k-diagramsMW,d of the last section can be naturally viewed as a direct sum of our four basic diagrams. In
fact, for W fixed, the family MW,d with d varying decomposes as a sum of a family of our four basic diagrams
indexed on d. This point of view will be useful to understand the virtual k-diagrams that we study later.

Definition 6.1. Let k be a field and a ∈ Z2. The ≥ a-indicator family of k-diagrams refers to the family of
k-diagrams indexed on d ∈ Z2, denoted {Id≥a}d∈Z2 , where for each d ∈ Z2 we set

1. Id≥a = k if d ≥ a,

2. Id≥a = k/B2
if d1 ≥ a1 and d2 < a2,

3. Id≥a = k/B1
if d2 ≥ a2 and d1 < a1, and

4. Id≥a = k/B1,B2
if d1 < a1 and d2 < a2.

Equivalently, for each d, Id≥a is equal to one of the four basic k-diagrams, where for each j = 1, 2, Id≥a(Bj) = k
if and only if aj ≤ dj.

We depict the indicator diagram in Figure 7.

Definition 6.2. If W : Z2 → Z≥0 ∪ {∞}, the W -sum indicator k-diagram, denoted I⊕Wd , refers to the direct
sum

I⊕Wd =
⊕
a∈Z2

(
Id≥a

)⊕W (a)
,

where if W (a) = ∞, then ⊕W (a) refers to ⊕N, i.e., the summand involved is the direct sum of a countably
infinite number of copies of Id≥a.

The following proposition is immediate, but worth stating.
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Id≥a(B1) =

{
k if a1 ≤ d1,
0 otherwise.

Id≥a(B2) =

{
k if a2 ≤ d2,
0 otherwise.

k

k

k

Inclusion

Inclusion

Identity

Identity

Figure 7: The Indicator k-Diagram Id≥a

Proposition 6.1. Let W : Z2 → {0, 1} be a perfect matching. Then there is an isomorphism

ιd : MW,d → I⊕Wd

given by the canonical isomorphisms for i = 1, 2

MW,d(Ai) = k⊕Z → I⊕Wd (Ai), MW,d(Bi) = k⊕Z≤di → I⊕Wd (Bi), (43)

and the isomorphisms
MW,d(B3) = k⊕W → I⊕Wd (B3); (44)

moreover, and for j = 1, 2, the maps MW,d(ρ3j) are isomorphisms of k⊕W → kZ.

Proof. The equalities in (43) and (44) are by definition (Definition 4.4). The fact that W is a perfect matching
implies that for each a1 there is a unique a2 with W (a1, a2) = 1; this gives the isomorphism k⊕Z → I⊕Wd (A1)

and k⊕Z≤d1 → I⊕Wd (B1); similarly for the subscript 1 replaced everywhere by 2. By Definition 6.1 each indicator

diagram Id≥a has Id≥a(ρ3j) being an isomorphism, and hence the same is true for I⊕Wd , and hence, by (43)
and (44), it also holds for MW,d. We easily check that the isomorphisms in (43) and (44) intertwine with the
restriction maps, and hence gives the desired isomorphism ιd.

Proposition 6.2. For any W : Z× Z→ Z≥0 ∪ {∞},

b0(I⊕Wd ) =
∑
a≤d

W (a),

b1(I⊕Wd ) =
∑

a≥d+1

W (a),

and hence, if one of these two Betti numbers is finite, we have

χ(I⊕Wd ) =

∑
a≤d

W (a)

−
 ∑

a≥d+1

W (a)

 .

Our main interest in Proposition 6.2 is for W that are s-fold perfect matchings in the following sense.

Definition 6.3. We say that a function W : Z2 → Z≥0 is an s-fold matching if it can be written as the sum of
s (bounded) perfect matchings.

To build models for general Riemann functions Z2 → Z, we will require the following strengthening of
Proposition 6.2.

Proposition 6.3. Let {Wi}i∈I be a finite or countably infinite set of functions Wi : Z2 → Z≥0 ∪ {∞}, and let
W =

∑
i∈IWi. Then

I⊕Wd '
⊕
i∈I
I⊕Wi

d . (45)

Let W : Z2 → Z≥0 be an s-fold matching, and W = W1 + · · · + Ws be a decomposition of W into perfect
matchings. Then for any d ∈ Z2 there is an isomorphism

I⊕Wd 'MW1,d ⊕ · · · ⊕MWs,d. (46)

In particular, if W = W ′1 + · · ·+W ′s is another decomposition of W into perfect matchings, then we have

MW1,d ⊕ · · · ⊕MWs,d 'MW ′1,d
⊕ · · · ⊕MW ′s,d (47)
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Proof. (45) follows from the easily verified fact that any direct sum of direct sums is the direct sum of all
summands in the double summation (this is, more generally, valid in any additive category, since this is an
inductive limit of inductive limits, see e.g., [1], Section I.2.5.0). (46) follows from (45) and Proposition 6.2. (47)
follows from (46).

Proof of Theorem 6.1. By Proposition 6.3, if

W = W1 + · · ·+Ws

W = W ′1 + · · ·+W ′s

are two decompositions of W into perfect matchings, we have (47) holds; this is exactly what Theorem 6.1
asserts.

7 Virtual Fredholm k-Diagrams and Riemann Functions
for n = 2

If f : Z2 → Z is a general Riemann function, its weight, W , can attain negative values. In this case we don’t
know of a good way to model f as the zeroth Betti number of a family of k-diagrams; however, one can do so
if we work with virtual k-diagrams. Our strategy is to use Lemma 3.1 to write

W = (W1 + · · ·+Ws)− (W̃1 + · · ·+ W̃s−1) (48)

for some s, where the Wi and W̃i are perfect matchings. We then model f as b0 of the virtual k-diagram(⊕
i

MWi,d,
⊕
i

MW̃i,d

)
, (49)

which is a “formal difference” of the first k-diagram “minus” the second.
Most of the work in this section is to iron out the notion of virtual vector spaces, virtual Fredholm maps, and

virtual k-diagrams. [We borrow the term virtual from virtual characters in group theory.] We then show that the
“virtual” or “formal difference of” k-diagrams (49) has the desired Betti numbers (this is immediate from our
discussion of formal differences), and—more notably—is independent, up to equivalence, of the decomposition
(48).

We caution the reader that by our conventions below, a virtual k-vector space will refer to a formal difference
of finite-dimensional vector spaces (Convention 7.1) and a virtual k-diagram will refer to a formal difference of
Fredholm k-diagrams, i.e., of k-diagrams whose Betti numbers are finite (Convention 7.2). These conventions
are needed to get a well-defined notion of Betti numbers, as we explain below.

Our main modeling result is Proposition 7.1, which builds a virtual (Fredholm) k-digram that expresses
any generalized Riemann-Roch formula (13) as an Euler characteristic formula. We formally take part of
Proposition 7.1 and combine this with earlier material to get Theorem 7.1; one can view this theorem as the
main result of this section. However, it is still important to understand all the results in this section, including
the full statement of Proposition 7.1.

We remark that any function W : Z2 → Z can be canonically expressed as

W = W+ −W−, where W+ = max(W, 0), W− = max(−W, 0).

Although we can see (for example, Example 7.1 below) thatMW+,d,MW−,d are not generally Fredholm, even if

sW is a Riemann function, by contrast I⊕W
+

d , I⊕W
−

d are always Fredholm, and this gives a sort of “canonical” or
“minimal” way to expressMW,d as a formal difference of (Fredholm) indicator k-diagrams (see Proposition 7.3).

7.1 Formal Definition of Virtual k-Diagrams (and Virtual Vector Spaces, Etc.)

We now introduce a group of formal differences—either of k-vector spaces, k-Fredholm maps, and k-diagrams—
that one sees in, say, K-theory, or constructing the integers from the natural numbers. This general idea is
often technically called the Grothendieck completion or the Grothendieck group (of a commutative monoid).

Remark 7.1. Like virtual characters in group theory, our virtual k-vector spaces and virtual k-diagrams
likely concern relatively coarse information (e.g., we don’t care about categorizing anything), as compared with
Grothendieck groups in other settings. See also Remark 9.1.
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B A
f

B′ A′
f ′

φB φA

Figure 8: A Morphism f → f ′.

Definition 7.1. Let k be a field. By a virtual k-diagram (respectively, virtual k-Fredholm map, virtual k-vector
space, etc.) we mean a pair (F1,F2) of k-diagrams (respectively, k-Fredholm map, k-vector space, etc.); we
write (F1,F2) ∼ (F ′1,F ′2) — and say that (F1,F2) and (F ′1,F ′2) are equivalent — if there is an isomorphism
φ with

φ : F1 ⊕F ′2 ⊕F0 → F ′1 ⊕F2 ⊕F0

for some k-diagram F0 (respectively, k-Fredholm map, etc.). At times we use the notation F1 	 F2 to denote
(F1,F2). We also view a k-diagram (k-Fredholm map, etc.) F as the virtual diagram F 	0, where 0 is the zero
k-diagram (and similarly for Fredholm k-map, etc.).

We easily see that ∼ is an equivalence relation, and that ⊕ and 	 can be extended to act on virtual
k-diagrams (respectively, Fredholm k-diagram, etc.) taken to behave like + and − regarding parenthesis, e.g.,

(F1 	F2)	 (F3 	F4) refers to (F1 ⊕F4)	 (F2 ⊕F3).

7.2 Virtual Vector Spaces

It is important to understand the difference between virtual k-vector spaces and virtual k-vector spaces of finite
dimension.

As virtual k-vector spaces, k ∼ 0 since there is an isomorphism k ⊕ kN → kN; however, we will easily prove
that for virtual finite-dimensional k-vector spaces, we have kb 	 ka ∼ kb′ 	 ka′ if and only if b− a = b′ − a′. To
prove this, one notices that:

1. if V, V ′ are isomorphic finite dimensional k-vector spaces, then (clearly) dim(V ) = dim(V ′); and

2. therefore if V1 	 V2 is equivalent to V3 	 V4 as finite-dimensional k-vector spaces, then for some finite
dimensional k-vector space V0 we have that

V1 ⊕ V4 ⊕ V0 ' V2 ⊕ V3 ⊕ V0,

and taking dimensions, we have an equality of finite integers

dim(V1) + dim(V4) + dim(V0) = dim(V2) + dim(V3) + dim(V0),

and hence
dim(V1)− dim(V2) = dim(V3)− dim(V4).

3. Hence, we can define
dim(V1 	 V2) = dim(V1)− dim(V2) ∈ Z,

which is well defined in the equivalence class of V1 	 V2.

Convention 7.1. By a virtual k-vector space we always mean a virtual k-vector space of finite dimension,
unless we specify otherwise.

7.3 Virtual k-Fredholm Maps

Let f : B → A and f ′ : B′ → A′ be morphisms (i.e., linear transformations) of k-vector spaces. By a morphism
from f to f ′ we mean a pair φ = (φB , φA) of morphisms φB : B → B′ and φA : A → A′ that commute in the
evident fashion, i.e., φAf = f ′φB ; see Figure 8. A morphism φ = (φB , φA) : f → f ′ is an isomorphism if φB
and φA are isomorphisms4. We easily verify the following facts.

1. If φ = (φB , φA) : f → f ′ is an isomorphism, then φB restricts to an isomorphism ker(f) → ker(f ′), and
similarly φA restricts to an isomorphism coker(f)→ coker(f ′).

4We remark that elsewhere, one considers morphisms up to homotopy or localizes at quasi-isomorphisms; in this article we have
no need for this.
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2. It follows that if we define for a virtual Fredholm map f = f1 	 f2 its cohomology groups for i = 0, 1 to
be the virtual (finite-dimensional) k-vector spaces

Hi
(
f1 	 f2

)
= Hi(f1)	Hi(f2), (50)

then if f1 	 f2 is equivalent to f3 	 f4 as virtual k-Fredholm maps, we have

Hi(f1)	Hi(f2) ∼ Hi(f3)	Hi(f4)

as virtual finite-dimensional k-vector spaces.

3. Hence (50) for i = 0, 1 are well-defined virtual finite-dimensional k-vector spaces, and hence setting

bi
(
f1 	 f2

)
= dimHi

(
f1 	 f2

)
= dimHi(f1)− dimHi(f2) ∈ Z

gives well-defined Betti numbers of a virtual k-Fredholm map.

Note that if we work with virtual k-linear transformations, without insisting that they are Fredholm maps, then
there seems to be no good way to define their Betti numbers (and hence cohomology groups), since dimensions
are not well defined for virtual k-vector spaces when we allow the spaces to be of infinite dimension.

7.4 Virtual k-Diagrams with Finite Betti Numbers

If F is a k-diagram, then F(∂) is a k-Fredholm map if and only if bi(F) is finite for both i = 0, 1. Hence, in the
category of “k-diagrams with finite Betti numbers,” the notion of a (virtual) cohomology group and (virtual)
Betti numbers are well-defined, by associating with F1 	F2 the virtual k-Fredholm map

(F1 	F2)(∂)
def
= F1(∂)	F2(∂).

Definition 7.2. Let k be a field. By a Fredholm k-diagram, we mean a k-diagram with both Betti numbers
finite.

It follows that virtual Fredholm k-diagrams have well-defined virtual cohomology groups and virtual Betti
numbers.

Convention 7.2. By a virtual k-diagram we mean a virtual Fredholm k-diagram unless we specify otherwise,
i.e., we are working with k-diagrams with both Betti numbers finite. Hence, a virtual k-diagram has well-
defined cohomology groups (which are virtual k-vector spaces of finite dimension) and therefore well-defined
Betti numbers.

7.5 Riemann Functions as Virtual Direct Sums

Our convention is that a virtual k-diagram refers to k-diagrams that are Fredholm; this is necessary to get
well-defined Betti numbers. Hence, we need the following easy lemma.

Lemma 7.1. Let W : Z2 → Z be any perfect matching. Then for any d ∈ Z2, MW,d has finite Betti numbers.
Similarly, for any d ∈ Z2, the number of a with W (a) = 1 and Id≥a having at least one non-zero Betti number
is finite.

Proof. Let W be a perfect matching. Theorem 4.2 shows thatMW,d has finite Betti numbers. The claim about
Id≥a follows since

MW,d = I⊕Wd =
⊕

W (a)=1

Id≥a,

and hence for i = 0, 1 we have

bi(MW,d) =
∑

W (a)=1

bi(Id≥a).

One can alternatively prove the claim about Id≥a above by noting that the only non-zero Betti numbers of
our four basic diagrams are b0 of k and b1 of k/B1,B2

; furthermore we have Id≥a = k if and only if d ≤ a, and
Id≥a = k/B1,B2

if and only if d + 1 ≥ a, and each of these conditions on a occurs for only finitely many a for
which W (a) = 1, since W is supported in degree bounded from above and below.
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Definition 7.3. Let f : Z2 → Z be a Riemann function, and W = mf . For any way of writing

W = (W1 + · · ·+Ws)− (W̃1 + · · ·+ W̃s−1) (51)

as the difference of a sum of perfect matchings, we use MW,d (with (51) understood) to denote the virtual
(Fredholm) k-diagram (

MW1,d ⊕ · · · ⊕MWs,d
,MW̃1,d

⊕ · · · ⊕MW̃s−1,d

)
.

The following proposition immediately implies the main result of this section, Theorem 7.1.

Proposition 7.1. Let f : Z2 → Z be a Riemann function, and W its weight. For any way of writing W as
(51), the equivalence class [MW,d], of the virtual k-diagram MW,d is independent of the way we write W in
(51). Furthermore, for any d ∈ Z2,

1. f(d) = b0([MW,d]),

2. for any K ∈ Z2, f∧K(K− d) = b1([MW,d]), and

3. χ([MW,d]) = deg(d) + C where C is the offset of f .

Proof. Say that we write W as

W = W1 + · · ·+Ws −
(
W̃1 + · · ·+ W̃s−1

)
with all Wi and W̃i as perfect matchings, and also as a difference of the sums of perfect matchings

W = W ′1 + · · ·+W ′s′ −
(
W̃ ′1 + · · ·+ W̃ ′s′−1

)
.

Then we have
W1 + · · ·+Ws + W̃ ′1 + · · ·+ W̃ ′s′−1 = W̃1 + · · ·+ W̃s−1 +W ′1 + · · ·+W ′s′ .

It follows from Proposition 6.3, specifically (47), that for any d ∈ Z2

(
s⊕
i=1

MWi,d

)
⊕

s′−1⊕
i=1

MW̃ ′i ,d

 ' (s−1⊕
i=1

MW̃i,d

)
⊕

 s′⊕
i=1

MW ′i ,d


and hence (

s⊕
i=1

MWi,d

)
	

(
s−1⊕
i=1

MW̃i,d

)
'

 s′⊕
i=1

MW ′i ,d

	
s′−1⊕

i=1

MW̃ ′i ,d


as virtual k-diagrams. Hence the class [MW,d] is independent of how we write W as a difference of (finite) sums
of perfect matchings.

For the second part of the proposition, we write W as in (51), and note that for any i,

b0(MWi,d) = (sWi)(d),

and similarly for W̃i, and hence

b0(MW,d) =
(
s(W1 + · · ·+Ws)

)
(d)−

(
s(W̃1 + · · ·+ W̃s−1)

)
(d) = (sW )(d),

where the last equality holds by applying s to both sides of (51) and using the linearity of s. We reason similarly
with b0 replaced with χ, in view of (17); finally we use b1 = b0 − χ to reason about b1.

It is worth collecting together an easy consequence of Proposition 7.1 and material in previous sections; this
can be viewed as the main result of this section.

Theorem 7.1. Let f : Zn → Z be a Riemann function with offset C, and K ∈ Zn. Then the generalized
Riemann-Roch formula

f(d)− f∧K(K− d) = deg(d) + C (52)

(see (13) and Definition 2.3) can be modeled as expressing the Euler characteristic of a virtual k-diagram as
follows:

1. Let W be the weight of f , i.e., W = mf , or, equivalently, f = sW and W is initially zero (Proposition 2.2).
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2. Write W as a difference of a sum of perfect matchings

W = (W1 + · · ·+Ws)− (W̃1 + · · ·+ W̃s−1) (53)

for some s (this is (48); see Lemma 3.1 for justification).

3. Let MW,d be the virtual k-diagram:

Md =

(⊕
i

MWi,d,
⊕
i

MW̃i,d

)
,

or, written equivalently,

Md =

(⊕
i

MWi,d

)
	

(⊕
i

MW̃i,d

)
.

4. Note that althoughMW,d depends on the choice of Wi’s and W̃i’s in (53), the isomorphism class, [MW,d],
of MW,d is independent of this choice (Proposition 7.1).

5. Then (52) can be interpreted as follows:

f(d) = b0([MW,d]), f∧K(K− d) = b1([MW,d]),

and therefore
χ([MW,d]) = deg(d) + C.

In Section 10 we will see that MW,d inherits the usual properties of line bundles in the classical Riemann-
Roch theorem: i.e., if e1, e2 are the standard basis vectors in Z2, then for each i = 1, 2 there is a short exact
sequence of virtual k-diagrams

0→MW,d →MW,d+ei
→ Si(k)→ 0

where Si is a virtual k-diagram isomorphic to the usual skyscraper (sheaf or) k-diagram, SkyAi
(k). [This is not

entirely true, since we are working with virtual k-diagrams, and hence we have a “difference” of two short exact
sequences, whose third elements are, respectively, s and s− 1 copies of Si(k).]

Example 7.1. Let W : Z2 → Z be 3-periodic and satisfy W (1, 0) = W (1, 2) = W (0, 1) = W (2, 1) = 1 and
W (1, 1) = −1. Therefore, for all m ∈ Z,

W (3m+ 1,−3m) = W (3m+ 1,−3m+ 2) = W (3m,−3m+ 1) = W (3m+ 2,−3m+ 1) = 1, (54)

and
W (3m+ 1,−3m+ 1) = −1. (55)

We easily see that the values of a = (a1, a2) at which W (a) 6= 0 and 0 ≤ a1 ≤ 2 or 0 ≤ a2 ≤ 2 correspond to
the values in (54) and (55) with m = 0. It follows that the 0, 1, 2-th row sums and the 0, 1, 2-th column sums
equal 1, and hence all row sums and all column sums of W equal 1, and hence sW is a Riemann function (one
can also check that W is slowly growing, as in Definition 2.8, by examining the values of W in rows 0, 1, 2 and
columns 0, 1, 2)5. One can write W = W1 −W2 + W3 in a number of ways, even where each Wi is 3-periodic,
but there seems to be no canonical way of doing so. One can also “canonically” write W = W+ −W− with
W+ = max(W, 0) and W− = max(−W, 0), but then we easily see that b0(MW+,d) = +∞6 for any d and
b1(MW−,d) = +∞ for any d7. Hence the virtual diagram (MW+,d,MW−,d) doesn’t have a well-defined Euler
characteristic (which should equal deg(d) + C for some C).

Example 7.2. We remark that there are virtual k-diagrams [MW,d] that can be realized as a formal difference
of Fredholm k-diagrams in uncountably many ways. Indeed, let W (i, j) = 1 if and only if for some t ∈ Z we have
i ∈ {2t, 2t+ 1} and j ∈ {−2t,−2t+ 1}. Hence W is a 2-fold matching. We claim there are uncountably many
perfect matchings W1 such that W2 = W −W1 is also a perfect matching: indeed, consider any perfect matching,
W1, such that for each t ∈ Z either W1(2t,−2t) = W1(2t+1,−2t+1) = 1 or W1(2t+1,−2t) = W (2t,−2t+1) = 1;
we easily see that W2 = W −W1 is also a perfect matching, and there are uncountably many such W1 (and
W1,W2 are supported in degrees 0,1,2, so they are, indeed, perfect matchings). By contrast, if we insist that W1

5For any W : Z2 → Z we easily see that sW is slowly growing if and only if the sign pattern in each row and each column is an
alternating sequence of +’s and −’s, beginning and ending in +’s. For the W in this example, we easily check this to be the case.

6To see that b0(MW+,d) = +∞, note that for each m large, G = Graph(W+,d) as in Theorem 4.3 has a cycle created by the
W -values W (3m+ 1,−3m) = W (3m+ 1,−3m+ 2) = 1 that give a multiple edge from v0 to the vertex 3m ∈ Vfirst.

7since for any m ∈ Z the vertices 3m, 3m+ 2 ∈ Vfirst are isolated in the graph Graph(W−,d) as in Theorem 4.3.
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is r-periodic for some r ≥ 1, then there are only finitely many possible W1 as above. Hence, for fixed perfect
matchings W̃1, W̃2 with W̃1 + W̃2 = W , we have

MW̃1,d
⊕MW̃2,d

'MW1,d ⊕MW2,d

whenever W1 +W2 = W .

Example 7.2 shows that unless we assume periodicity, the virtual k-diagram [MW,d] can be realized as a
virtual k-diagram in uncountably many ways. It similarly follows (unless we make some periodicity assumptions)
that whenever (48) holds, there are uncountably many ways of writing W as (48), if we replace s with s + 2
there, and let Ws+1,Ws+2, W̃s, W̃s+1 be, respectively, W1,W2, W̃1, W̃2 in Example 7.2 above.

One can generalize the above proposition to indicator k-diagram sums.

Proposition 7.2. Let W1, . . . ,W4 be functions Z2 → Z≥0 such that W1 −W2 = W3 −W4. Then for all d we
have

IW1

d 	 IW2

d ∼ IW3

d 	 IW4

d .

Moreover, if IWi

d is a Fredholm k-diagram for all i, then this equivalence holds as virtual Fredholm k-diagrams.

Proof. Indeed, if W = W1 +W4 = W2 +W3, then clearly

IW1

d ⊕ IW4

d ' IWd ' I
W2

d ⊕ IW3

d .

7.6 A Canonical Virtual k-Diagram of a Riemann Function

In Example 7.1 we remarked that one can canonically write

W = W+ −W−, where W+ = max(W, 0), W− = max(−W, 0), (56)

but this doesn’t generally express W as a difference of perfect matchings; furthermore, as Example 7.1 shows,
even if sW is a Riemann function, (MW+,d,MW−,d) may not have a well defined Euler characteristic. In
this subsection, we remark that the (56) does lead to a canonical way to write [MW,d] as a virtual k-diagram
composed of indicator k-diagrams.

Proposition 7.3. Let W : Z2 → Z be initially and eventually zero. With notation as in (56), for each d ∈ Z2,
the formal difference

I⊕Wd

def
= I⊕W

+

d 	 I⊕W
−

d

is a virtual k-diagram, i.e., both I⊕W
+

d and I⊕W
−

d are Fredholm k-diagrams. Furthermore, if sW is a Riemann
function, then as virtual (Fredholm) k-diagrams

[I⊕Wd ] = [MW,d]. (57)

Proof. Since W is initially and eventually zero, for any d, the number of a with d ≤ a and W (a) 6= 0 is finite,

and similarly for the number with d + 1 ≥ a. Hence both I⊕W
+

d and I⊕W
−

d are Fredholm k-diagrams. To see
(57), we see that for any equality (48) we have

(W1 + · · ·+Ws)− (W̃1 + · · ·+ W̃s−1) = W = W+ −W−

and hence
W− + (W1 + · · ·+Ws) = W+ + (W̃1 + · · ·+ W̃s−1)

and hence for all d ∈ Z we have

I⊕W
−

d ⊕ I⊕W1

d ⊕ · · · ⊕ I⊕Ws

d ' I⊕W
+

d ⊕ I⊕W̃1

d ⊕ · · · ⊕ I⊕W̃s−1

d ,

and hence
I⊕W

−

d ⊕MW1,d ⊕ · · · ⊕MWs,d ' I
⊕W+

d ⊕MW̃1,d
⊕ · · · ⊕MW̃s−1,d

,

and since all k-diagrams are Fredholm, this implies (57) as virtual (Fredholm) k-diagrams.

8 Modeling General Riemann Functions

In this section, we model any Riemann function f : Zn → Z by gluing together the models we have developed
for n = 2. We begin by stating the main results, leaving the proofs of the more difficult theorems for later
subsections.
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8.1 Main Modeling Results

Definition 8.1. Let f : Zn → Z be a Riemann function. For any i, j ∈ [n] with i 6= j and any d ∈ Zn,
let fi,j,d = fi,j,d(ai, aj) : Z2 → Z be the two-variable restriction (16). (We write ai, aj as the arguments for
fi,j,d instead of, say, a1, a2, to stress that ai corresponds to adding aiei in (16), and similarly for aj). We set
W = Wf ;i,j,d to be the weight of fi,j,d, and define the virtual k-diagram associated to f and d at coordinates
i, j to be the class

[Mf ;i,j,d]
def
= [MW,0] = [MWf;i,j,d,0]

(which we know is a single equivalence class of virtual (Fredholm) k-diagrams).

The merit of the above definition is described in the following theorem, that is really a straightforward
consequence of Proposition 7.1.

Theorem 8.1. Let f : Zn → Z be a Riemann function. Then for any distinct i, j ∈ [n] and d ∈ Zn we have

b0([Mf ;i,j,d]) = fi,j,d(0) = f(d), (58)

χ([Mf ;i,j,d]) = χ(MW,0) = deg(d) + C (59)

where C is the offset of f , and for every K ∈ Zn we have

b1([Mf ;i,j,d]) = f∧K(K− d). (60)

In particular, it follows that for any distinct i′, j′ ∈ [n] we have

b1([Mf ;i,j,d]) = f∧K(K− d) = b0([Mf∧K;i′,j′,K−d]). (61)

Proof. By definition, Mf ;i,j,d =MW,0 with W = Wf ;i,j,d equal to the weight of fi,j,d. Hence Proposition 7.1
implies that

b0[MW,0] = (sW )(0) = fi,j,d(0) = f(d)

and hence (58) holds. If C is the offset of f , then for sufficiently large ai + aj we have

fi,j,d(ai, aj) = f(d + aiei + ajej) = deg(d + aiei + ajej) + C = ai + aj + deg(d) + C

and it follows that the offset of fi,j,d is C ′ = deg(d) + C. So Proposition 7.1 implies that

χ([MW,0]) = deg(0) + C ′ = C ′ = deg(d) + C

and (59) follows. It follows that

b1[MW,0] = b0[MW,0]− χ[MW,0] = f(d)− deg(d)− C,

and Proposition 7.1 and (13) implies (60).
Finally, (61) follows from (60) and from (58) with f replaced with f∧K and with d replaced with K− d.

The main goal of this section is to prove the following two theorems that state that the equivalence class of
the virtual Fredholm k-diagram [Mf ;i,j,d] is independent of the choice of i and j.

Theorem 8.2. Let n ∈ N with n ≥ 3, d ∈ Zn, f : Zn → Z be a Riemann function, and i, j, j′ ∈ [n] be three
distinct integers. Then [Mf ;i,j,d] = [Mf ;i,j′,d].

This theorem is more technical, and will be proven in Subsection 8.5. The above theorem easily yields one
of the main results in the section.

Corollary 8.1. Let n ∈ N with n ≥ 2, d ∈ Zn, and f : Zn → Z be a Riemann function. Then the equivalence
class [Mf ;i,j,d] of virtual (Fredholm) k-diagrams is independent of the choice of distinct i, j ∈ [n].

Proof. For distinct i, j ∈ [n] we haveMf ;i,j,d 'Mf ;j,i,d by the evident morphism that exchanges B1, A1 values
respectively with B2, A2 values. Hence for any i 6= j we have

[Mf ;i,j,d] = [Mf ;j,i,d]. (62)

If n = 2, then the only choices of distinct i, j ∈ [2] are (i, j) equal to either (1, 2) or (2, 1). Since (62) shows
that

[Mf ;1,2,d] = [Mf ;2,1,d],

this proves the corollary in the case n = 2.
Hence, it suffices to prove the corollary when n ≥ 3.
According to Theorem 8.2 we have [Mf ;1,2,d] = [Mf ;1,j,d] for any j ≥ 3, and similarly for any i 6= j we have

[Mf ;j,1,d] = [Mf ;j,i,d]. Combining these two equalities with (62) we have

[Mf ;1,2,d] = [Mf ;1,j,d] = [Mf ;j,1,d] = [Mf ;j,i,d] = [Mf ;i,j,d].
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The above corollary makes the following definition well-defined.

Definition 8.2. For any Riemann function f : Zn → Z, and any d ∈ Zn, we define the virtual k-diagram of
f at d, denoted [Mf at d] to be the class of virtual k-diagram [Mf ;i,j,d] for any distinct i, j ∈ [n] (which is a
single equivalence class of virtual k-diagrams in view of Corollary 8.1).

Stating Theorem 8.1 in terms of Definition 8.2 immediately implies the following theorem.

Theorem 8.3. Let f : Zn → Z be any Riemann function with offset C, and let d,K ∈ Z. Then we have

b0
(
[Mf at d]

)
= f(d),

χ
(
[Mf at d]

)
= deg(d) + C,

and
b1
(
[Mf at d]

)
= f∧K(K− d) = b0

(
[Mf∧K at K−d]

)
.

In the following special case of Theorem 8.2 one can prove a much stronger result.

Theorem 8.4. Let n ∈ N with n ≥ 3, d ∈ Zn, f : Zn → Z be a Riemann function, and i, j, j′ ∈ [n] be three
distinct integers. Say that the weights of fi,j,d and fi,j′,d, respectively Wf ;i,j,d and Wf ;i,j′,d, are non-negative,
and hence both perfect matchings. Then we have

Mf ;i,j,d 'Mf ;i,j′,d.

The proof of this theorem will be given in Subsection 8.3.

Corollary 8.2. Let n ∈ N with n ≥ 3, d ∈ Zn, and f : Zn → Z be a Riemann function. Say that for some
I ⊂ [n] we have that for all i, j ∈ I, Wf ;i,j,d = mfi,j,d is everywhere non-negative, and is therefore a perfect
matching. Then all the k-diagrams Mf ;i,j,d varying over distinct i, j ∈ I are isomorphic (as k-diagrams).

The proof is the same as that of Corollary 8.1.
In particular, if I = [n] in the above corollary, then for fixed f and all d ∈ Zn, the k-diagrams Mf ;i,j,d are

all isomorphic, and one can define [Mf at d] as an equivalence class of k-diagrams. Then Corollary 8.2 yields
the following result, which gives a stronger conclusion than Theorem 8.3 in a special case thereof.

Theorem 8.5. Let f : Zn → Z be any Riemann function with offset C, and let K ∈ Z. Assume that for
all distinct i, j ∈ [n] and all d ∈ Zn, mfi,j,d and m(f∧K)i,j,d are perfect matchings. Then the conclusions
of Theorem 8.3 hold where we understand that [Mf at d] and [Mf∧K at K−d] refer to equivalence classes of k-
diagrams.

We remark that (89) of Section 9 shows that if mfi,j,d are non-negative for all i, j,d, then so all the m(f∧K)i,j,d,
and conversely.

It is helpful to first prove Theorem 8.4 first, as it is simpler to prove, but illustrates the main idea in the
proof of Theorem 8.2

The rest of this section is dedicated to proving these two theorems.
One crucial ingredient of the proofs of both theorems is the equality

∀a ∈ Z, fi,j,d(a, 0) = f(d + aei) = fi,j′,d(a, 0). (63)

The other idea in both proofs is to look for an isomorphism that is very simple along the A1 values of MW,d,
and to see what conditions this requires elsewhere; it turns out that it is only along the B2 value that one needs
some conditions, and those conditions turn out to be exactly (63). Let us give the details.

8.2 Isomorphisms That Are Simple Along the A1 Values

To prove Theorem 8.4, we will use the following lemma.

Lemma 8.1. Let W,W ′ be perfect matchings, and π, π′ their associated bijections. Then for any d ∈ Z2 the
following are equivalent:

1. there exists an isomorphism of k-diagrams φ : MW,d →MW ′,d such that φ(A1) is the identity; and

2.
∀a ∈ Z≤d1 , π(a) ≤ d2 ⇐⇒ π′(a) ≤ d2. (64)

We remark that to prove Theorem 8.2, we need know only that (2) ⇒ (1).
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k⊕Z≤d1

k⊕Z≤d2

k⊕W

k⊕Z

k⊕Z

ea1 7→ ea1

ea2 7→ ea2

e(a1,π(a1)) 7→ ea1

e(a1,π(a1)) 7→ eπ(a1)

k⊕Z≤d1

k⊕Z≤d2

k⊕W

k⊕Z

k⊕Z

ea1 7→ ea1

ea2 7→ ea2

e(a1,π′(a1)) 7→ ea1

e(a1,π′(a1) 7→ eπ′(a1)

φ(B1) = identity

Is φ(B2) defined?

φ(B3)e(a1,π(a)) = e(a1,π′(a1))

φ(A1) = identity

φ(A2)(eπ(a1)) = eπ′(a1)

MW,d MW ′,d
φ

Figure 9: Implications of φ(A1) = identity, for a φ : MW,d →MW ′,d (where we omit the quantifiers ∀a1 ∈ Z
and ∀a2 ∈ Z)

Proof. Consider a morphism φ with φ(A1) the identity. In Figure 9, φ(A1), i.e., identity map, is depicted in
a thick line, and the inferences about the other values of φ are depicted in dashed lines. We easily see that
(considering Figure 9):

1. φ(B1) is forced to be the identity,

2. φ(B3) must take e(a1,π(a1)) to e(a1,π′(a1)) for all a1 ∈ Z,

3. φ(A2) is forced to take eπ(a1) to eπ′(a1) for all a1 ∈ Z, and

4. φ(B2) is uniquely determined if it exists, and it exists if and only if for all a1 ∈ Z with π(a1) ≤ d2, the
vector the eπ′(a1) lies in k⊕Z≤d2 .

Hence φ(B2) exists if and only if

∀a1 ∈ Z≤d1 , π(a1) ≤ d2 ⇒ π′(a1) ≤ d2;

and hence φ(B2) exists and is an isomorphism if and only if (64) holds.

We similarly prove the following generalization that we will use to prove Theorem 8.2.

Lemma 8.2. Let W1, · · · ,Ws and W ′1, · · · ,W ′s be two sequences of perfect matchings Z2 → Z. Let d ∈ Z2,
and for each a1 ∈ Z and j ∈ [s], let eai,j and e′ai,j denote, respectively, the standard basis vector ea1 ∈ kZ in,
respectively MWj ,d(A1) and MW ′j ,d

(A1). Let

W = W1 + · · ·+Ws, W ′ = W ′1 + · · ·+W ′s,

and
Md =MW1,d ⊕ · · · ⊕MWs,d, M′d =MW ′1,d

⊕ · · · ⊕MW ′s,d.

Then for any d ∈ Z2, the following are equivalent:

1. there exists an isomorphism φ : M → M′ that for each a1 ∈ Z≤d1 , φ(A1) restricted to ea1,1, . . . , ea1,s
yields a bijection from this set to e′a1,1, . . . , e

′
a1,s;

2. letting πr, π
′
r for r ∈ [s] denote the bijections associated to Wr,W

′
r, for all a1 ≤ d1,∣∣{r | πr(a1) ≤ d2}

∣∣ =
∣∣{r′ | π′r′(a1) ≤ d2}

∣∣.
Proof. We have

Md(A1) =
⊕
a1∈Z

Span(ea1,1, . . . , ea1,s)

and similarly with M′ and the e′a1,i. Condition (1) says that for each a1 ∈ Z there is a permutation σ = σa1
on [s] such that

φ(A1)(ea1,i) = e′a1,σa1
(i).
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But the isomorphism MWi,d ' I
⊕Wi

d allows us to write

Md '
⊕

a1∈Z, i∈[s]

Id≥(a1,πi(a1))

in a way that ea1,i ∈Md(A1) corresponds to the standard basis vector in vector (with the same indices) ea1,i.
Since the same is true of M′d and σa1 , that gives that the desired isomorphism must have that for all a1 ∈ Z
and i ∈ [s]

Id≥(a1,i) ' Id≥(a1,σa1
(i));

similar to the argument in the proof of Lemma 8.1, this holds automatically for the B1, B3, A2 values, and holds
at the B2 value if and only if

πi(a1) ≤ d2 ⇐⇒ π′σa1 (i)(a1) ≤ d2. (65)

Hence, for each a1 ∈ Z, such a σa1 exists if and only if (65) holds, and if so for each a1 ∈ Z we can choose any
permutation σa1 on [s] that maps

{r | πr(a1) ≤ d2} to {r′ | π′r′(a1) ≤ d2}

(and therefore σa1 also maps the same with ≤ d2 replaced everywhere with > d2).

8.3 Proof of Theorem 8.4 and Examples

In this section, we will prove Theorem 8.4, which follows almost immediately from the lemma below (which
adds a third equivalent condition to Lemma 8.1).

Lemma 8.3. Let W,W ′ be perfect matchings, and π, π′ their associated bijections. Then for any d ∈ Z2 the
following are equivalent:

1. there exists an isomorphism of k-diagrams φ : MW,d →MW ′,d such that φ(A1) is the identity; and

2.
∀a ∈ Z≤d1 , π(a) ≤ d2 ⇐⇒ π′(a) ≤ d2;

and

3. setting f = sW and f ′ = sW ′ we have

∀a ∈ Z≤d1 , f(a, d2) = f ′(a, d2). (66)

Proof. The equivalence of (1) and (2) is just Lemma 8.1.
(2) ⇒ (3): for any a ∈ Z we have

f(a, d2)− f(a− 1, d2) =
∑
a2≤d2

W (a, a2) =

{
1 if π(a) ≤ d2, and
0 otherwise,

(67)

and similarly

f ′(a, d2)− f ′(a− 1, d2) =

{
1 if π′(a) ≤ d2, and
0 otherwise,

(68)

Now f(a, d2) = f ′(a, d2) = 0 for a sufficiently small, and hence (66) holds for a ≤ a′ for some a′. Assuming (2),
(67) and (68) imply that for all a ≤ d1 we have

f(a, d2)− f(a− 1, d2) = f ′(a, d2)− f ′(a− 1, d2)

and therefore
f(a, d2)− f ′(a, d2) = f(a− 1, d2)− f ′(a− 1, d2).

Hence, we can use induction on a from a′ + 1 to d1 to infer that (66) holds for all a ≤ d1.
(3) ⇒ (2): (66) implies that for any a ≤ d1 we have

f(a, d2)− f(a− 1, d2) = f ′(a, d2)− f ′(a− 1, d2)

and hence (67) and (68) imply that for each a ≤ d1, π(a) ≤ d2 if and only if π′(a) ≤ d2.

Proof of Theorem 8.4. The equation (63) implies condition (3) of Lemma 8.3 with d1 = d2 = 0. Hence we
conclude condition (1) of Lemma 8.3 in this case, which is just the assertion of Theorem 8.4.
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We finish this subsection by showing how to generate non-trivial examples, of Lemma 8.3 and Theorem 8.4,
and specify one such example explicitly; this may serve to illustrate how this lemma and this theorem work in
practice.

Example 8.1. Let f be as in Example 2.11. Then

f1,2,0(a1, 0) = f1,3,0(a1, 0)

for all a1 ∈ Z. Hence if W,W ′ are the respective weights of f1,2,0, f1,3,0, then W 6= W ′, and, in more detail,
W,W ′ are both 4-periodic, and their associated bijections π, π′ satisfy

π(0) = π′(0) = 0, π(1) = π′(1) = 1,

and
π(−1) = π′(−2) = 2, π(−2) = π′(−1) = 3.

Hence π′ 6= π, but it is nonetheless true that

∀a1 ∈ Z≤0, π(a1) ≤ 0 ⇐⇒ π′(a1) ≤ 0

(which moreover holds for all a1 ∈ Z). One can similarly generate examples of f1,2,d and f1,3,d for any d ∈ Z4.
One can also generate examples as in Example 2.9 with n ≥ 5.

Example 8.2. Let G = Kn be the complete graph on n vertices, and f = 1 + rBN the Riemann function
associated to the Baker-Norine rank function on G. Then Folinsbee and Friedman [11] show that any two-
variable restriction of f has non-negative weight. Hence one can generate further examples of f1,2,d, f1,3,d for
various d ∈ Zn.

8.4 Generalization of Lemma 8.3

When Mf ;i,j,d and Mf ;i,j′,d are virtual k-diagrams, we will need the following generalization of Lemma 8.3.
(To prove Theorem 8.2, we need only that (4) implies (1) below.)

Lemma 8.4. Let W1, · · · ,Ws and W ′1, · · · ,W ′s be two sequences of perfect matchings Z2 → Z. Let d ∈ Z2,
and for each a1 ∈ Z and j ∈ [s], let eai,j and e′ai,j denote, respectively, the standard basis vector ea1 ∈ kZ in,
respectively MWj ,d(A1) and MW ′j ,d

(A1). Let

W = W1 + · · ·+Ws, W ′ = W ′1 + · · ·+W ′s,

and
Md =MW1,d ⊕ · · · ⊕MWs,d, M′d =MW ′1,d

⊕ · · · ⊕MW ′s,d.

Then for any d ∈ Z2, the following are equivalent:

1. there exists an isomorphism φ : M → M′ that for each a1 ∈ Z≤d1 , φ(A1) restricts to a bijection from
ea1,1, . . . , ea1,s to e′a1,1, . . . , e

′
a1,s (and, moreover, in this case one can also take from the subset of ea1,r

with πr(a1) ≤ d2 to those e′a1,r with π′r(a1) ≤ d2 where πr, π
′
r are the bijections associated to Wr,W

′
r);

2. letting πr, π
′
r for r ∈ [s] denote the bijections associated to Wr,W

′
r,

∀a1 ∈ Z≤d1 ,
∣∣{r | πr(a1) ≤ d2}

∣∣ =
∣∣{r | π′r(a1) ≤ d2}

∣∣;
3.

∀a1 ∈ Z≤d1 ,
∑
a2≤d2

W (a1, a2) =
∑
a2≤d2

W ′(a1, a2);

4. if f = sW and f ′ = sW ′, then

∀a1 ∈ Z≤d1 , f(a1, d2) = f ′(a1, d2).

Moreover, if the above conditions hold, then all maps φ(A1) are determined as those that for each a1 ∈ Z≤d1
restricts to a bijection

{ea1,r | πr(a1) ≤ d2} → {e′a1,r | π
′
r(a1) ≤ d2}

and to a bijection
{ea1,r | πr(a1) ≥ d2 + 1} → {e′a1,r | π

′
r(a1) ≥ d2 + 1}.
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Another way to think of this lemma is to recall that if W1, . . . ,Ws are perfect matchings, and W = W1 +

· · ·+Ws, then MW1,d ⊕ · · · ⊕MWs,d ' I
W
d . Hence this lemma shows that IWd ' I

W ′

d .

Proof. (1) ⇐⇒ (2): this is Lemma 8.2.
(2) ⇐⇒ (3): this is by definition: if W is any perfect matching, then π is the unique bijection such that

W (a, π(a)) = 1 for all a ∈ Z. Hence, for any d2 and a1 we have∑
a2≤d2

W (a1, a2) =
∣∣{r | πr(a1) ≤ d2}

∣∣.
Similarly ∑

a2≤d2

W ′(a1, a2) =
∣∣{r | π′r(a1) ≤ d2}

∣∣.
So if for some a1, the number of values of r such that πr(a1) ≤ d2 is the number of r′ with πr′(a1) ≤ d2, then
for this particular value of a1, ∑

a2≤d2

W (a1, a2) =
∑
a2≤d2

W ′(a1, a2)

Now we apply this fact to all a1 ≤ d1.
(3) ⇐⇒ (4): similar to (67), we have for all a ∈ Z,

f(a, d2)− f(a− 1, d2) =
∑
a2≤d2

W (a, a2) =
∣∣{r | πr(a) ≤ d2}

∣∣,
and similarly

f ′(a, d2)− f ′(a− 1, d2) =
∑
a2≤d2

W ′(a, a2) =
∣∣{r | π′r(a) ≤ d2}

∣∣.
The claim after (1)–(4) about φ(A1) follows from (65) (and the discussion below it). (This claim is not

needed in what follows, but serves to illustrate the way that φ(A1)—and therefore all of φ—is constructed.)

8.5 Proof of Theorem 8.2

To prove Theorem 8.2, we need only the part of Lemma 8.4 that asserts condition (4) there implies condition (1).

Proof of Theorem 8.2. Since fi,j,d is a Riemann function Z2 → Z, we can write

W = mfi,j,d = W1 + · · ·+Ws − W̃1 − · · · − W̃s−1

where the Wi and W̃i are perfect matchings, and we may similarly write

W ′ = mfi,j′,d = W ′1 + · · ·+W ′s′ − W̃ ′1 − · · · − W̃ ′s′−1

To show that MW,0 'MW ′,0 it suffices to show that(
s⊕
i=1

MWi,0

)
⊕

s′−1⊕
i=1

MW̃ ′i ,0

 ' (s−1⊕
i=1

MW̃i,0

)
⊕

 s′⊕
i=1

MW ′i ,0

 (69)

Let
f1 = s(W1 + · · ·+Ws), f2 = s(W̃1 + · · ·+ W̃s−1)

so that fi,j,d = f1 − f2 and similarly

f ′1 = s(W ′1 + · · ·+W ′s′), f ′2 = s(W̃ ′1 + · · ·+ W̃ ′s′−1)

and so fi,j′,d = f ′1 − f ′2. By definition

fi,j,d(a1, 0) = f(d + eia1) = fi,j′,d(a1, 0)

for all a1 ∈ Z. It follows for all a1 ∈ Z we have

(f1 − f2)(a1, 0) = (f ′1 − f ′2)(a1, 0),

and therefore
∀a1 ∈ Z, (f1 + f ′2)(a1, 0) = (f2 + f ′1)(a1, 0).

Hence applying Lemma 8.4 with f, f ′ there replaced with f1 +f ′2 and f2 +f ′1 respectively (and W1, . . . ,Ws there
replaced with W1, . . . ,Ws, W̃

′
1, . . . , W̃

′
s′−1 here, and W ′1, . . . ,W

′
s there with W̃1, . . . , W̃s−1,W

′
1, . . . ,W

′
s′ here),

we have that condition (4) of this lemma holds, and therefore condition (1) holds. Therefore (69) holds, and
therefore

MW,0 'MW ′,0

as virtual k-diagrams.

ECA 5:3 (2025) Article #S2R21 40



Nicholas Folinsbee and Joel Friedman

9 The First Duality Theorems

In this section, we show that the k-diagram k/B1,B2
is a “dualizing” k-diagram, in that for any k-diagram F

we have that there is an isomorphism

H1(F)∗ → Hom(F , k/B1,B2
)

which is “natural” or “functorial” in F .
We then prove that any for perfect matching, W , and any K,L ∈ Z2 with L = K + 1, for any d there is a

isomorphism
H1(MW,d)∗ → H0(MW∗L ,K−d).

Since these are finite dimensional vector spaces, by replacing W and d with, respectively, W ∗L and K − d, we
moreover get isomorphisms

Hi(MW,d)∗ → H1−i(MW∗L ,K−d) for i = 0, 1.

We use this to infer that if W is the weight of any Riemann function Z2 → Z, there are equivalences of virtual
k-vector spaces

Hi
(
[MW,d]

)∗ ∼ H1−i([MW∗L ,K−d]
)

for i = 0, 1,

where [MW,d] is the equivalence class of virtual k-diagrams, and the dual of a virtual k-vector space is appro-
priately defined. We use this to infer that for any Riemann function f : Zn → Z and any d,K ∈ Zn there are
equivalences

Hi
(
[Mf at d]

)∗ ∼ H1−i([Mf∧K at K−d]
)

for i = 0, 1. (70)

9.1 Representing H1(F)∗

Theorem 9.1. For any k-diagram F there is a natural isomorphism

H1(F)∗ → Hom(F , k/B1,B2
),

where “natural” means “functorial” in the sense that if µ : F → G is any morphism, then the natural map
H1(G)∗ → H1(F)∗ obtained by dualizing the map µ induces from H1(F)→ H1(G) is the same as the map

Hom(G, k/B1,B2
)→ Hom(F , k/B1,B2

).

In modern parlance, the functor F → H1(F)∗ is represented by the k-diagram k/B1,B2
. In Section 10, we

will give a conceptually simple proof of this theorem using standard techniques from homological algebra. Here
we content ourselves with proving this theorem directly, which is straightforward, although a bit tedious.

For the proof below, note that if L : U → V is any linear map of (possibly infinite-dimensional) k-vector
spaces, then if V ∗ denotes the k-dual space of V , i.e., the vector space of maps V → k, then the usual dual map
L∗ : V ∗ → U∗ is given by

∀w : V → k, L∗(w) = w ◦ L; (71)

we claim that there is an isomorphism (
coker(L)

)∗ → ker
(
L∗
)

(72)

constructed as follows: any w ∈
(
coker(L)

)∗
is a map w from coker(L) = (V/Image(L)) to k, and so the quotient

map V → V/Image(L) followed by w gives a map w̃ : V → k, which takes Image(L) to 0. Hence w̃ ∈ V ∗ and
satisfies L∗w̃ = w̃ ◦ L = 0; hence w̃ ∈ ker(L∗). Conversely, any v ∈ ker(L∗) is a map V → k such that the
composition

U
L−→ V

v−→ k

is the zero map, i.e., v takes Image(L) to 0; hence v determines a map ṽ : V/Image(L) → k, and hence a map
coker(L)→ k. Hence ṽ ∈ (coker(L))∗. We easily check that the maps w 7→ w̃ and v 7→ ṽ are inverses.

We warn the reader that in Subsection 10.6 we will see that if L : U → V is any linear map, there is a natural
map

coker(L∗)→
(
ker(L)

)∗
,

however, in contrast to (72), (to the best of our knowledge) one needs to assume the axiom of choice (or Zorn’s
lemma) to ensure that this is an isomorphism. Hence it is remarkable that (72) is an isomorphism without
assuming the axiom of choice.
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F(B1)

F(B2)

F(B3)

F(A1)

F(A2)

F(ρ1,1)

F(ρ2,2)

F(ρ3,1)

F(ρ3,2)

0

0

k

k

k

0

0

Identity

Identity

φ(B1)

φ(B2)

φ(B3)

φ(A1)

φ(A2)

Figure 10: A morphism φ : F → k/B1,B2

Proof of Theorem 9.1. Consider a morphism φ : F → k/B1,B2
; see Figure 10. Hence we have(

φ(A1),−φ(A2)
)
∈
(
F(A1)

)∗ ⊕ (F(A2)
)∗

(when we view φ(Ai) : F(Ai)→ k as an element of the dual space of F(Ai)); let us prove that, moreover,(
φ(A1),−φ(A2)

)
∈ ker

((
F(∂)

)∗)
.

To do so, in view of (27), we have (F(∂))∗ is the map(
F(∂)

)∗
:
(
F(A1)

)∗ ⊕ (F(A2)
)∗ → (

F(B1)
)∗ ⊕ (F(B2)

)∗ ⊕ (F(B3)
)∗

given as the map taking (w1, w2) with wi ∈ (F(Ai))
∗ as follows:

(w1, w2) 7→
( (
F(ρ1,1)

)∗
(w1) ,

(
F(ρ2,2)

)∗
(w2) , −

(
F(ρ3,1)

)∗
(w1)−

(
F(ρ3,2)

)∗
(w2)

)
,

which, in view of (71) we may write more simply as the map

(w1, w2) 7→
(
w1F(ρ1,1) , w2F(ρ2,2) , −w1F(ρ3,1)− w2F(ρ3,2)

)
(73)

where, for brevity, we have omitted the composition symbol ◦.
So set w1 = φ(A1) and w2 = −φ(A2). Since k/B1,B2

has value 0 at B1, we have φ(A1)F(ρ1,1) must be the
zero map. Arguing similarly for B2, we have

w1F(ρ1,1) = 0, (74)

−w2F(ρ2,2) = 0.

Similarly, since for i = 1, 2 the map from the B3 value of k/B1,B2
to the Ai is the identity map (on k), we have

φ(B3) = φ(Ai)F(φ3,i),

and hence
w1F(φ3,1) = −w2F(φ3,2) = φ(B3),

and hence
w1F(φ3,1) + w2F(φ3,2) = 0. (75)

In view of (74)–(75) we have (w1, w2) = (φ(A1),−φ(A2)) is taken to (0, 0, 0) under the map (73).
Next we claim that, conversely, if (w1, w2) ∈ ker(((F(∂))∗), then there exists some φ ∈ Hom(F , k/B1,B2

)
such that φ(A1) = w1 and φ(A2) = −w2. Namely, this determines φ at A1, A2; this forces the values of φ at
the Bi, namely we set φ(Bi) = 0 for i = 1, 2 and we set

φ(B3) = w1F(ρ3,1) = φ(A1)F(ρ3,1)

(so that φ intertwines with the restrictions from B3 to A1 of F and k/B1,B2
). Now we verify that φ is actually

a morphism: for example, since (w1, w2) ∈ ker(((F(∂))∗), in view of (73) we have

w1F(ρ3,1) + w2F(ρ3,2) = 0
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and it follows that
φ(B3) = −w2F(ρ3,2) = φ(A2)F(ρ3,2),

and therefore φ intertwines with the restrictions from B3 to A2. Similarly φ intertwines with the restrictions
from Bi to Ai for i = 1, 2, i.e., φ(Ai)F(ρi,i) = 0, in view of (73).

It follows that the map
φ 7→

(
φ(A1),−φ(A2)

)
is gives an isomorphism (80).

To check the desired functoriality, say that µ : F → G is any morphism. The map (80) with G replacing F
is given by associating to φ ∈ Hom(G, k/B1,B2

) the element(
φ(A1),−φ(A2)

)
∈ ker

((
G(∂)

)∗)
. (76)

Then to φ we associate the element
φ ◦ µ ∈ Hom(F , k/B1,B2

),

and therefore to φ ◦ µ we associate the element(
φ ◦ µ(A1),−φ ◦ µ(A2)

)
∈ ker

((
F(∂)

)∗)
. (77)

But to an element of H1(G), namely an element (76), the action of µ taking H1(G) to H1(F) is precisely µ
applied to each element, which again gives (77). Hence the isomorphism (80) is functorial (or natural).

9.2 A Duality Theorem for Perfect Matchings

Theorem 9.2. Let W : Z2 → Z be a perfect matching. Then for any K ∈ Z2 and L = K + 1, for any d there
is an isomorphism

Hom
(
MW,d, k/B1,B2

)
→ Hom

(
k,MW∗L ,K−d

)
(78)

induced by decomposing the above diagrams into indicator diagrams and taking the isomorphism

Hom(k/B1,B2
, k/B1,B2

)→ Hom(k, k) (79)

which takes the identity morphism of k/B1,B2
to the identity morphism of k (both Hom sets are isomorphic to

k, in view of Example 5.3). Moreover, (79) gives us an isomorphism

H1(MW,d)∗ → Hom(k,MW∗L ,K−d), (80)

which gives us isomorphisms

Hi(MW,d)∗ → H1−i(MW∗L ,K−d) for i = 0, 1. (81)

Before giving the proof, let us make a remark regarding this theorem.
We remark that if f = sW in the above theorem, then Theorem 4.2 and (13) imply that

b1(MW,d) = f∧K(K− d) = b0(MW∗L ,K−d);

applying this equation with W,d respectively replaced with W ∗L and K− d, we therefore get

bi(MW,d) = b1−i(MW∗L ,K−d) for i = 0, 1. (82)

Hence (81) strengthens this formula, by giving the isomorphism of vector spaces (81) that upon taking dimen-
sions implies (82).

Proof. We remark that for any a,d ∈ Z2, Id≥a is one of our four basic diagrams, and equals k/B1,B2
if and only

if a ≥ d + 1 (recall Definition 6.1); hence

Hom(Id≥a, k/B1,B2
)

is 0 unless a ≥ d + 1, in which case it equals

Hom(k/B1,B2
, k/B1,B2

).

(recall Example 5.2). Since

MW,d =
⊕

W (a)=1

Id≥a,
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we have

Hom(MW,d, k/B1,B2
) '

∏
W (a)=1

Hom(Id≥a, k/B1,B2
) =

⊕
W (a)=1, a≥d+1

Hom(k/B1,B2
, k/B1,B2

).

On the other hand, we similarly have
Hom(k, Id≥a)

is 0 unless a ≤ d, in which case it equals Hom(k, k). Hence

Hom(k,MW∗L ,K−d) =
⊕

W∗L(a)=1, a≤K−d

Hom(k, k)

=
⊕

W (L−a)=1, a≤K−d

Hom(k, k)

which, upon substituting a′ = L− a in the sum,

=
⊕

W (a′)=1, L−a′≤K−d

Hom(k, k) =
⊕

W (a′)=1, a′≥1+d

Hom(k, k).

Hence in (78), the left-hand-side has one copy of Hom(k/B1,B2
, k/B1,B2

) for each a with W (a) = 1 and
a ≥ d+1, and the right-hand-side one copy of Hom(k, k) for each such a. Hence, we have an isomorphism (78).

Composing the isomorphism in Theorem 9.1 with (78) gives us an isomorphism (80), which also proves the
i = 1 case of (81). Since these are finite-dimensional vector spaces, this also gives an isomorphism

H0(MW∗L ,K−d)∗ → H1(MW,d).

If we apply this isomorphism when we replace all occurrences of W,d with, respectively, W ∗L,K − d (so that
W ∗L is therefore replaced with W , and K− d with d), we have an isomorphism

H0(MW,d)∗ → H1(MW∗L ,K−d).

This proves the i = 0 case of (81). Hence, both the i = 0 and i = 1 cases of (81) hold.

9.3 The Dual of a Virtual k-Vector Space

In this subsection, we define the dual of a virtual k-vector space and make some brief remarks about this
definition. In Appendix A we discuss some more foundational aspects about virtual vector spaces that partially
justify our definition.

In Theorem 9.2, we have an isomorphism from the dual of H1(MW,d) to H0(MW∗L ,K−d). In our more

general duality theorems (namely Theorem 9.3 and Theorem 9.4 below), H1(MW,d) and will be a virtual k-
vector space (V1, V2), H0(MW,d) a virtual vector space (V3, V4); Theorem 9.2 then provides an isomorphism
V ∗1 → V3 and V ∗2 → V4. For this reason, we will be pretty much forced to make the following definition.

Definition 9.1. Let (V1, V2) be a virtual k-vector space (which, by convention, means V1, V2 are finite-dimensional).
We define the dual of (V1, V2) to be the virtual k-vector space (V ∗1 , V

∗
2 ).

Proposition 9.1. Let (V1, V2) ∼ (V3, V4) be equivalent (finite dimensional) virtual k-vector spaces. Then any
equivalence, i.e., any isomorphism

µ : V0 ⊕ V1 ⊕ V4 → V0 ⊕ V2 ⊕ V3

for some V0, gives rise to an equivalence (V1, V2)∗ ∼ (V3, V4)∗.

Proof. Since µ is an isomorphism, the dual map of µ,

µ∗ : (V0 ⊕ V2 ⊕ V3)∗ → (V0 ⊕ V1 ⊕ V4)∗

yields an isomorphism
V ∗0 ⊕ V ∗2 ⊕ V ∗3 → V ∗0 ⊕ V ∗1 ⊕ V ∗4 ;

since all the Vi are finite-dimensional, so are all the V ∗i .

We also remark that in Theorem 9.3 one could avoid references to the dual space of a virtual vector space
provided that one has a good notion of “pairing” and “perfect pairing” of virtual vector spaces. See Appendix A
for further remarks about pairings, as well as other remarks that motivate Definition 9.1 as possibly (i.e., in
future work) fitting into a broader notion of “morphisms” of virtual vector spaces, rather than just being a
definition of necessity.
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9.4 Duality for Weights of Riemann Functions Z2 → Z
Theorem 9.3. Let W be the weight of an arbitrary Riemann function Z2 → Z. Then for any d,K,L ∈ Z2

there are equivalences of virtual k-vector spaces

Hi([MW,d])∗ ∼ H1−i([MW∗L ,K−d]) for i = 0, 1. (83)

The proof of this theorem is mostly a matter of unwinding the various definitions and applying Theorem 9.2.

Remark 9.1. There is a chance that one could view the above theorem, specifically (83), as giving isomorphisms

Hi([MW,d])∗ → H1−i([MW∗L ,K−d]) for i = 0, 1,

provided that we are willing to “categorize” our virtual k-vector spaces, by “localizing,” i.e., formally inverting
all equivalence maps. This might turn our virtual k-vector spaces as a union of disjoint groupoids, one groupoid
for each dimension (i.e., each element of Z). However, this hardly seems worth it here; but see more comments
in Appendix A.

Proof of Theorem 9.3. Write W as a difference of sums of perfect matchings

W = (W1 + · · ·+Ws)− (W̃1 + · · ·+ W̃s−1), (84)

whereupon Hi([MW,d]) refers to the kernel and cokernel of the virtual Fredholm map(
MW1,d(∂)⊕ · · · ⊕MWs,d(∂)

)
	
(
MW̃1,d

(∂)⊕ · · · ⊕MW̃s−1,d
(∂)
)
.

In view of (84) we have

W ∗L =
(
(W1)∗L + · · ·+ (Ws)

∗
L)−

(
(W̃1)∗L + · · ·+ (W̃s−1)∗L

)
,

and for any d ∈ Z2 we have that Hi(MW∗L ,K−d) refers to the equivalence class of the kernel and cokernel of(
M(W1)∗L,K−d(∂)⊕ · · · ⊕M(Ws)∗L,K−d(∂)

)
	
(
M(W̃1),K−d(∂)⊕ · · · ⊕M(W̃s−1)∗L,K−d

(∂)
)
.

In view of (81) we have for each d ∈ Z2,

H1(MWi,d)∗ → H0(M(Wi)∗L,K−d)

for all i, i.e., an isomorphism (
coker

(
MWi,d(∂)

))∗
→ ker

(
M(Wi)∗L,K−d(∂)

)
,

and similarly with W̃i replacing Wi. Hence, in view of Definition 9.1, we get an equivalence of virtual vector
spaces

H1(MW,d)∗ ∼ H0(MW∗L ,K−d).

This proves the i = 1 case of (83). Replacing W,d everywhere in the above equation with W ∗L,K−d and taking
duals gives the i = 0 case of (83). Hence, both the i = 0 and i = 1 cases of (83) hold.

9.5 Duality for All Riemann Functions

In this subsection, we establish (70) for an arbitrary Riemann function f : Zn → Z. The first lemma below
is the essential insight; roughly speaking, it says that the two-variable restriction of a generalized Riemann-
Roch formula yields a generalized Riemann-Roch formula for the two-variable restriction. In other words, if
f : Zn → Z is a Riemann function, then for all d,K ∈ Zn we have

f(d)− f∧K(K− d) = deg(d) + Cf (85)

where Cf is the offset of f . Now consider K and d3, . . . , dn to be fixed, and (d1, d2) varying over all of Z2; then

g(d1, d2) = f(d)

is a Riemann function of two variables d1, d2, and g therefore satisfies

g(d1, d2)− g∧(K1,K2)(K1 − d1,K2 − d2) = d1 + d2 + Cg (86)

where Cg is the offset of g. The first lemma shows (easily) that the right-hand-sides of (86) and (85) are equal,
and therefore the negative term of the left-hand-sides of (86) and (85) are equal, i.e.,

f∧K(K− d) = g∧(K1,K2)(K1 − d1,K2 − d2)

where d1, d2 are varying. The first lemma expresses this equality of functions in a way that is useful to establish
(70), namely as (89) below.
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Lemma 9.1. Let n ≥ 2, f : Zn → Z be a Riemann function with offset Cf , let d,K ∈ Zn, and let (K̃1, K̃2) ∈ Z2.
Set

d′ = d− d1e1 − d2e2 = (0, 0, d3, . . . , dn),

and let g = f1,2,d′ . Then

1. for all a1, a2 ∈ Z,
g(a1, a2) = f1,2,d′(a1, a2) = f(a1, a2, d3, . . . , dn);

2. the offset of g = f1,2,d′ is
Cg = d3 + · · ·+ dn + Cf ;

3.
f∧K(K− d) = g∧

K̃1,K̃2
(K̃1 − d1, K̃2 − d2); (87)

and

4. setting K′ = (0, 0,K3, . . . ,Kn), we have

∀a1, a2 ∈ Z, (f∧K)1,2,K′−d′(a1, a2) = g∧(K1,K2)(a1, a2) = (f1,2,d′)
∧
(K1,K2)(a1, a2). (88)

Moreover, for any d,K, and d′,K′ as above, we have an equality of functions

(f∧K)1,2,K′−d′ = (f1,2,d′)
∧
(K1,K2). (89)

Proof. (1) is immediate. (2) follows from the fact that with d3, . . . , dn fixed and a1 + a2 sufficiently large we
have

f(a1, a2, d3, . . . , dn) = a1 + a2 + d3 + · · ·+ dn + Cf ,

which by (1) equals
g(a1, a2) = a1 + a2 + Cg

for a1 + a2 sufficiently large. Hence Cg = d3 + · · ·+ dn + Cf .
To prove (3), in view of (12) we have

f∧K(K− d) = f(d)− deg(d)− Cf , (90)

and similarly
g∧

(K̃1,K̃2)
(K̃1 − d1, K̃2 − d2) = g(d1, d2)− (d1 + d2)− Cg

which, in view of (1) and (2),

= f(d)− (d1 + d2)− (d3 + · · ·+ dn + Cf ) = f(d)− deg(d)− Cf

which is just the right-hand-side of (90); this yields (87).
To prove (4), taking K̃i = Ki for i = 1, 2, (87) gives

f∧K(K− d) = g∧(K1,K2)(K1 − d1,K2 − d2).

Hence we have

(f∧K)1,2,K′−d′(K1 − d1,K2 − d2) = f∧K(K− d) = g∧(K1,K2)(K1 − d1,K2 − d2),

and therefore

(f∧K)1,2,K′−d′(K1 − d1,K2 − d2) = g∧(K1,K2)(K1 − d1,K2 − d2) = (f1,2,d′)
∧
(K1,K2)(K1 − d1,K2 − d2).

But the functions
(f∧K)1,2,K′−d′ , g = f1,2,d′ , and g∧(K1,K2) = (f1,2,d′)

∧
(K1,K2)

are, as functions Z2 → Z, independent of d1, d2, since d′ discards the components d1, d2. Hence, for fixed f,K
and d3, . . . , dn, we have

∀d1, d2 ∈ Z, (f∧K)1,2,K′−d′(K1 − d1,K2 − d2) = g∧(K1,K2)(K1 − d1,K2 − d2),

which upon setting ai = Ki − di for i = 1, 2 proves (88).
Finally (89) follows from (4) and the value of g.
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The next lemma is straightforward but needs to be stated formally.

Lemma 9.2. Let W : Z2 → Z be the weight of a Riemann function, f : Z2 → Z, and for some t ∈ Z2 let g be
the translation of f by t, i.e., given by

g(d) = f(d + t).

Then W ′ = mg satisfies
∀d ∈ Z2, [MW ′,d] = [MW,d+t].

Proof. We leave the proof as an exercise8.

Theorem 9.4. Let f : Zn → Z be an arbitrary Riemann function. Then for any d,K ∈ Zn there are equivalences

Hi
(
[Mf at d]

)∗ ∼ H1−i([Mf∧K at K−d]
)

for i = 0, 1, (91)

which specifically arises by setting d′ = (0, 0, d3, d4, . . . , dn) taking W = mf1,2,d′ , and applying (83).

Proof. By Definition 8.2 we have
[Mf at d] = [Mmf1,2,d,(0,0)].

But for all a ∈ Z2 we have
f1,2,d(a) = f1,2,d′

(
(d1, d2) + a

)
since both sides equal f(d + a1e1 + a2e2). Hence f1,2,d is a translation of f1,2,d′ by (d1, d2), and Lemma 9.2
implies that

[Mmf1,2,d,(0,0)] = [MW,(d1,d2)].

In view of (83) we have an isomorphism

Hi
(
[Mf at d]

)∗ → H1−i([MW∗K1+1,K2+1,(K1−d1,K2−d2)]
)
. (92)

Since W = mg where g = f1,2,d′ , (89) implies that

W ∗K1+1,K2+1 = m
(
g∧(K1,K2)

)
= m

(
(f∧K)1,2,K′−d′

)
with K′ = (0, 0,K3, . . . ,Kn). Lemma 9.2 similarly implies that[

M
m
(

(f∧K)1,2,K′−d′
)
,(K1−d1,K2−d2)

]
=
[
M

m
(

(f∧K)1,2,K−d

)
,(0,0)

]
which, by Definition 8.2,

=
[
Mf∧K at K−d

]
.

Hence, this equality and (92) yields (91).

10 Stronger Duality Properties and Further Remarks

In this section, we will prove some stronger duality properties of k/B1,B2
. To do so, we will develop some

foundations of the homological algebra of k-diagrams, including a discussion of skyscraper k-diagrams and
coskyscraper k-diagrams, based on the unpublished results in [12]. We also discuss the connection of k-diagrams
to Grothendieck’s sheaf theory and classical sheaf theory. This discussion will tie up a number of loose ends:
for example, we will show that our definition of the cohomology groups of k-diagrams agree with the usual
definition of of these groups, both in the context of sheaf theory for Grothendieck topologies and for classical
topological spaces. We will also comment on periodic Riemann functions and possible future work.

Let us summarize the main results of this section.
The first stronger duality property of k/B1,B2

is that for any k-diagram, F , we have

H0(F)∗ ' Ext1(F , k/B1,B2
), (93)

where Ext1 is the “first Ext group;” in order to define this group, and to make some basic computations, we
will need some results from homological algebra.

When we define Ext groups, we will see that Ext0(F ,G) is isomorphic to Hom(F ,G), and Exti(k,F) is
isomorphic to Hi(F) for all i; hence combining (93) with Theorem 9.1 yields the following theorem.

8Hint: write W as a difference of sums of perfect matchings

W = W1 + · · ·+Ws − W̃1 − · · · − W̃s−1.

Then setting W ′i to be the translation by t of Wi, and similarly for W̃ ′i , we have

W ′ = W ′1 + · · ·+W ′s − W̃ ′1 − · · · − W̃ ′s−1.

Since W ′i is translation by t of Wi, we have MW ′i ,d
=MWi,d+t, and similarly for W̃ ′i and W̃i. Now take direct sums.
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Theorem 10.1. For any k-diagram, F , and for i = 0, 1, there are isomorphisms

Hi(F)∗ → Ext1−i(F , k/B1,B2
) (94)

that are functorial (i.e., natural) in F . In other words, Hom(F , k/B1,B2
) and Ext1(F , k/B1,B2

) are isomorphic
to the kernel and cokernel, respectively, of the dual map

F(∂)∗ : F(A)∗ → F(B)∗

defined in Definition 4.1.

The proof is given in Subsection 10.7. This theorem shows that k/B1,B2
plays the role of the canonical sheaf

in the statement of Serre duality (e.g., Section III.7 of [16]).
The second duality result, proven at the end of this section, gives a method for computing the Serre functor,

S, on a k-diagram, and we show that S(k) ' k/B1,B2
[1]; the proof is an immediate consequence of the proofs of

Theorems 10.1 and 10.2 below.
To prove these results, we will develop the notion of skyscraper and coskyscraper k-diagrams. The reader

familiar with sheaf theory in topology or algebraic geometry (e.g., [16]) will be able to check that skyscraper
k-diagrams are the analog of skyscraper sheaves in topological sheaf theory (coskyscraper k-diagrams do not
generally exist in topological sheaf theory). We stress that all k-diagrams have a two-term injective resolution
with skyscraper k-diagrams, and a two-term projective resolution with coskyscraper k-diagrams. This makes
working with k-diagrams much simpler than with sheaves over general topological spaces.

In this section, we will also show that the definition of the cohomology groups of a k-diagram, Definition 4.1,
agrees with the usual definition of cohomology groups. Namely, we will prove the following theorem.

Theorem 10.2. Let F be a k-diagram. Then the cohomology groups, Hi(F), of F defined in Definition 4.1
are isomorphic to the groups Exti(k,F) defined by viewing the category of k-diagrams as an abelian category.

We will briefly review some facts about homological algebra, and refer the reader to the textbook [17] or [16],
Section III.1 for details.

We remark that the modern foundations of homological algebra implicitly assume that Zorn’s lemma holds,
and it follows that for any two k-vector spaces A ⊂ B, there is a B′ ⊂ B such that B is the direct sum of A
and B′. Hence, we assume this here (see Subsection 10.6 for further discussion).

10.1 Skyscraper and Co-Skyscraper k-Diagrams

To compute Ext groups below, we will use skyscraper and coskyscraper diagrams that we now describe.
For any k-vector space, V , consider the k-diagram, denoted SkyA1

(V ), depicted below:

V

0

V
V

0

SkyA1
(V )

where all maps V → V are identity maps; we call this the skyscraper diagram of V at A1. We easily check that
for any F , and any

φ ∈ Hom(F ,SkyA1
(V )),

the value of φ(A1) : F(A1) → V determines all of φ: indeed, the map φ(B1) : F(B1) → V must equal φ(A1) ◦
F(ρ1,1); conversely, any map F(A1)→ V extends to such a morphism φ. Hence the map φ 7→ φ(A1) sets up an
isomorphism

Hom(F ,SkyA1
(V )) ' Homk(F(A1), V ),

where Homk denotes the morphisms as k-vector spaces.
One similarly defines SkyA2

(V ), and for j = 1, 2, 3 one defines SkyBj
(V ) to be the k-diagram whose only

nonzero value is V , at Bj . We depict these k-diagrams below.

0

V

V
0

V

SkyA2
(V )

V

0

0
0

0

SkyB1
(V )

0

V

0
0

0

SkyB2
(V )

0

0

V
0

0

SkyB3
(V )
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This gives for any P = A1, A2, B1, B2, B3 and any k-vector space, V , a diagram, SkyP (V ) with an isomorphism

Hom(F ,SkyP (V )) ' Homk(F(P ), V ),

given by
for φ ∈ Hom(F ,SkyP (V )), φ 7→ φ(P ).

Skyscrapers are particularly useful because one can prove that they are injective k-diagrams (see Proposition 10.2
below).

Similarly one defines for a k-vector sapce V the coskyscraper k-diagram at Ai or at Bj to be the diagrams
depicted below:

0

0

0
V

0

CoSkyA1
(V )

0

0

0
0

V

CoSkyA2
(V )

V

0

0
V

0

CoSkyB1
(V )

0

V

0
0

V

CoSkyB2
(V )

0

0

V
V

V

CoSkyB3
(V )

One verifies that for P = A1, A2, B1, B2, B3 and any k-vector space, V , there is an isomorphism

Hom(CoSkyP (V ),G) ' Homk(V,G(P )) (95)

taking φ to φ(P ). Coskyscrapers are particularly useful because one can prove that they are projective k-
diagrams (see Proposition 10.2 below).

10.2 A Minimal Introduction to Homological Algebra and Value-by-Value Eval-
uation

Here we will briefly review some facts about homological algebra, and refer the reader to the textbook [17]
or [16], Section III.1 for details.

In order to use apply homological algebra, we need to know that k-diagrams and their morphisms form an
abelian category (see [17], Definition 1.2.2 or [16], Section III.1); in computations, we will need to know how to
compute the kernel, image, and cokernel in the sense defined for abelian categories.

Definition 10.1. If φ : F → G is a morphism of k-diagrams, then the kernel (respectively image and cokernel)
of φ is the k-diagram whose value at P = A1, A2, B1, B2, B3 equals ker(φ(P )) (respectively, Image(φ(P )) and
coker(φ(P ))), and whose restriction maps are induced by those of F (respectively, those of G in both cases).

In other words, we define kernel, image, and cokernel by evaluating them “value-by-value.”
The next proposition is well known.

Proposition 10.1. The category of k-diagrams is an abelian category. The definitions of kernel, image, and
cokernel in Definition 10.1 agree with those notions when viewing the category of k-diagrams as an abelian
category.

The reader can prove this proposition directly; however, in Subsection 10.8 we will give two other proofs: one
by a direct appeal to [1], and another by appealing to the special nature of sheaf theory over finite topological
spaces. Of course, the reader may prefer to just assume this proposition and carry out the computations below.

A doubly-infinite sequence of morphisms of k-diagrams

· · · → F−1 d−1

−−→ F0 d0−→ F1 d1−→ · · ·

is exact in position i if Image(di−1) = ker(di), i.e., for all P ∈ {A1, A2, B1, B2, B3} we have Image(di−1(P )) =
ker(di(P )). A sequence of morphisms is exact if it is exact at each position. The analogous definition holds for
a finite sequence of morphisms, or a one-sided infinite sequence of morphisms.

A short exact sequence is an exact sequence

0→ F1 → F2 → F3 → 0. (96)

For such a sequence, and any k-diagram, G, the morphisms in the above sequence determine, via composition,
a sequence

0→ Hom(G,F1)→ Hom(G,F2)→ Hom(G,F3)→ 0 (97)
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and a sequence
0→ Hom(F3,G)→ Hom(F2,G)→ Hom(F1,G)→ 0. (98)

We say that a k-diagram, G is injective (respectively, projective), if for any short exact sequence (96), the
resulting sequence (97) (respectively, (98)) is exact. Any finite direct sum of injectives is injective, and any of
projectives is projective.

In contrast with a lot of commonly used abelian categories—such as the category of sheaves of abelian groups
or of k-vector spaces on a topological space—each k-diagram has simple projective and injective resolutions.

Proposition 10.2. Any skyscraper (respectively, coskyscraper) k-diagram is injective (respectively, projective).
Any k-diagram F fits into an exact sequence

0→ P1 → P0 → F → 0 (99)

where P1,P0 are projective—actually direct sums of coskyscraper diagrams; we call (99) a two-term projective
resolution of F . Moreover, if the values of F are finite dimensional k-vector spaces, then the coskyscraper sheaves
in the projective resolution can be taken to be are of the form CoSkyP (V ) where the V are finite dimensional
k-vector spaces. Similarly, any G fits into an exact sequence,

0→ G → I0 → I1 → 0, (100)

where I0, I1 are injective; we call (100) a two-term injective resolution of G. Moreover, if the values of G are
finite dimensional k-vector spaces, then the injective resolution is a sum of k-diagrams SkyP (V ) where the V
are finite dimensional k-vector spaces.

We will prove this proposition in Subsection 10.4.
The fact that any k-diagram has a two-term projective resolution and a two-term injective resolution makes

the definition of Ext groups especially simple. (For the general definition of Ext groups, see [16,17].)
For any k-diagrams, F ,G, we take a projective resolution (99) and define the group Exti(F ,G) for i = 0, 1,

respectively, as the kernel and cokernel of the resulting maps

Hom(P0,G)→ Hom(P1,G),

which are independent (up to isomorphism) of the projective k-diagrams P1,P0 and morphism P1 → P0 yielding
an exact sequence; Ext0(F ,G) ' Hom(F ,G). Furthermore, taking any injective resolution (100), the resulting
kernel and cokernel of the map

Hom(F , I0)→ Hom(F , I1)

are also isomorphic to Exti(F ,G) for, respectively, i = 0, 1 (see, e.g., Theorem 2.7.69 (page 63) of [17]).
Consider any short exact sequence of k-diagrams

0→ F1 → F2 → F3 → 0

(i.e., for each P = A1, A2, B1, B2, B3, the sequence

0→ F1(P )→ F2(P )→ F3(P )→ 0

is exact). In this case for any k-diagram, G, there is a long exact sequence

0→ Ext0(F3,G)→ Ext0(F2,G)→ Ext0(F1,G)→ Ext1(F3,G)→ · · ·

and this sequence is “natural” or “functorial” in G, i.e., if G1 → G2 is a morphism, then there are morphisms
Exti(Fj ,G1)→ Exti(Fj ,G2) that commute with the maps in the two resulting long exact sequences. Similarly,
to any short exact sequence 0→ G1 → G2 → G3 → 0, there is a long exact sequence

0→ Ext0(F ,G1)→ Ext0(F ,G2)→ Ext0(F ,G3)→ Ext1(F ,G1)→ · · · (101)

that is functorial in F (see, for example, the discussion of universality, since k-diagrams have enough injectives
(see [16], Corollary 1.4, Section III.1).

9One is also using the Freyd-Mitchell Embedding Theorem, namely Theorem 1.6.1 of [17] (page 25), so that working with
R-modules implies the same results over any small abelian category.
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10.3 Working with Ext Groups

Our discussion of skyscraper and coskyscraper k-diagrams have some easy consequences that we will need when
we make computations; we state these results in the two propositions below, and we leave both proofs to the
reader.

Proposition 10.3. Let P be one of A1, A2, B1, B2, B3. For each k-diagram, G, and each u ∈ G(P ), the
isomorphisms

Hom(CoSkyP (k),G) ' Homk(k,G(P )) ' G(P )

determine a unique
ιP,u ∈ Hom

(
CoSkyP (k),G

)
such that ιP,u(P ) takes 1 to u. For each k-diagram, F , and each w ∈ F(P )∗, the isomorphisms

Hom(F ,SkyP (k)) ' Homk(F(P ), k) ' F(P )∗

determine a unique
ιP,w ∈ Hom

(
F ,SkyP (k)

)
such that ιP,w(P ) takes each u ∈ F(P ) to w(u) ∈ k.

In computing Ext groups and the Serre functor, the following observations will be helpful.

Definition 10.2. For P, P ′ ∈ {A1, A2, B1, B2, B3}, we say that P ′ is a specialization of P if P ′ = P , or if
P = Ai for some i = 1, 2 and P ′ = Bi, B3; we also write P ′ ≤ P , which gives a partial order on the set
{A1, A2, B1, B2, B3}.

Proposition 10.4. For P, P ′ each equal one of A1, A2, B1, B2, B3. We have

Hom(CoSkyP (k),CoSkyP ′(k)) '
(
CoSkyP ′(k)

)
(P )

which equals k or 0 according to whether or not P ′ is a specialization of P . Furthermore, let P ′ be a specialization
of P , and consider the map

µ ∈ Hom(CoSkyP (k),CoSkyP ′(k))

given by µ(P ) takes 1 ∈ Hom(CoSkyP,k(P ) to α ∈ k = CoSkyP ′,k(P ). Then for any k-diagram, F , the map
that µ induces by composition

Hom(CoSkyP ′(k),F)→ Hom(CoSkyP (k),F),

when equivalently viewed as a map
F(P ′)→ F(P ),

is the restriction map in F from F(P ′) → F(P ) multiplied by α. Similarly, for P, P ′ each equal one of
A1, A2, B1, B2, B3, we have

Hom(SkyP (k),SkyP ′(k)) '
(
SkyP (k)

)
(P ′)

which equals k or 0 according to whether or not P ′ is a specialization of P ; if

µ ∈ Hom(SkyP (k),SkyP ′(k))

satisfies (µ(P ′))1 = α, then the map that µ induces by composition

Hom(F ,SkyP ′(k))→ Hom(F ,SkyP (k)),

when equivalently viewed as a map
F(P ′)∗ → F(P )∗,

is the dual of restriction map in F from F(P ′)∗ → F(P )∗ multiplied by α.

The proof is a straightforward checking of the various cases of P and P ′ in {A1, A2, B1, B2, B3}, which we
leave to the reader. [The analogous result holds (and is similarly easy to check) for presheaves (in the sense
of [1]) over any semitopological category; see [12].]
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10.4 Two-Term Injective and Projective Resolutions

In this section we prove Proposition 10.2. The proof will introduce some useful tools to construct some slightly
different resolutions of k and k/B1,B2

.

Proof of Proposition 10.2. For any short exact sequence (96), and any P = A1, A2, B1, B2, B3,

0→ F1(P )→ F2(P )→ F3(P )→ 0 (102)

is a short exact sequence of k-vector spaces. For any k-vector space, V , setting G = CoSkyP,V , (97) is equivalent
to the sequence of k-vector spaces

0→ Homk

(
V,F1(P )

)
→ Homk

(
V,F2(P )

)
→ Homk

(
V,F3(P )

)
→ 0,

which we easily verify is exact by choosing a basis for V , which reduces this to the case V = k, which is
equivalent to (102). Hence, any coskyscraper k-diagrams is projective.

Similarly for G = SkyP,V , (98) is equivalent to the sequence

0→ Homk

(
F3(P ), V

)
→ Homk

(
F2(P ), V

)
→ Homk

(
F1(P ), V

)
→ 0

which we see is exact by choosing a basis, X, for Image(F1(P )) in F2(P ), and then extending this to a basis
X ∪X ′ for all of F2(P ). We then see that each element of Homk

(
F2(P ), V

)
is determined by one of each of

Homk

(
F i(P ), V

)
for i = 1, 3. Hence, any skyscraper k-diagram is injective.

For the projective resolution of a k-diagram, F , we note that for each P = A1, A2, B1, B2, B3, the isomor-
phism

Hom(CoSkyP (F(P )),F) ' Homk

(
F(P ),F(P )

)
(taking φ to φ(P )) determines a unique map

φP,F : CoSkyP
(
F(P )

)
→ F (103)

that corresponds to the identity map of Homk

(
F(P ),F(P )

)
, i.e., the identity map φP (P ) is the identity map

F(P )→ F(P ). This sets up a morphism
φ : P0 → F ,

where
P0 =

⊕
P

CoSkyP
(
F(P )

)
, φ =

⊕
P

φP .

We see that ker(φ) is 0 on B1, B2, B3, and hence ker(φ) is a sum of coskyscrapers at A1, A2. Hence we get a
resolution

ker(φ) = P1 → P0 → F ,

where P1,P0 are direct sums of coskyscraper k-diagrams.
Similarly the maps

φP,F : F → SkyP
(
F(P )

)
such that φP (P ) is the identity, yield an injective map F → I0 whose cokernel at A1, A2 is 0, and hence we get
a two-term injective resolution F → I0 → I1 where I0 = ⊕PSkyP

(
F(P )

)
.

[Similar remarks hold for the category of presheaves on any finite categories that are semitopological in the
sense of [12]; see [13] for examples of this general principle in another special case, namely the semitopological
categories used to define a sheaf on a graph.]

10.5 Proof of Theorem 10.2

To prove Theorem 10.2 we rely on the following straightforward calculation.

Lemma 10.1. The k-diagram k has a projective resolution

0→
2⊕
i=1

CoSkyAi
(k)

µ1−→
3⊕
j=1

CoSkyBj
(k)

µ0−→ k → 0, (104)

where

µ0 =

3⊕
j=1

φBj ,k (105)
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with φBj as in (103), and the map µ1 is the as follows: the restriction to µ1 of CoSkyA1
(k) is determined by

the element (1, 0,−1) in(
3⊕
j=1

CoSkyBj
(k)

)
(A1) =

3⊕
j=1

(
CoSkyBj

(k)
)
(A1) = k ⊕ {0} ⊕ k,

i.e., equals the element ιA1,(1,0,−1) as in Proposition 10.3, and similarly µ1 restricted to CoSky(A2) is ιA2,(0,1,−1).

Proof. Setting

P0 =

3⊕
j=1

CoSkyBj
(k)

we have P0(Bj) = k for j = 1, 2, 3, and µ0 in (105) has µ0(Bj) : k → k being the identity map. Furthermore,

P0(A1) =

3⊕
j=1

(
CoSkyBj

(k)
)
(A1) = k ⊕ {0} ⊕ k

and µ0(A1) takes k ⊕ {0} ⊕ k → k(A1) = k by the map taking (u1, 0, u3) to u1 + u3. Similarly µ(A2) takes
P(A2) = {0} ⊕ k ⊕ k to k(A2) by the map taking (0, u2, u3) to u2 + u3. It follows µ0 is surjective, and that
P1 = ker(µ0) has P1(Bj) = 0 for all j, and

P1(A1) = ker
(
(u1, 0, u3) 7→ u1 + u3

)
, P1(A2) = ker

(
(0, u2, 0, u3) 7→ u2 + u3

)
.

Hence P1(A1) is a one dimensional k-vector space, spanned by (1, 0,−1) ∈ k ⊕ {0} ⊕ k, and P(A2) similarly,
spanned by (1, 0,−1). Since for CoSkyAi,k has value k at Ai and everywhere else {0}, P1 is the sum of one-
dimensional coskyscrapers with the value k and the maps P1 → P0 is as in the statement of the lemma.

We remark that in the above lemma, P1(A1) is a the one-dimensional kernel of the map (u1, 0, u3) 7→ u1 +u3;
hence this kernel is spanned both by ±(1, 0,−1); the choice of one over the other is arbitrary, and similarly,
the choice of µ1(A1) could take 1 to (1, 0,−1) or (−1, 0, 1). Similarly for P1(A2). [The opposite category of C
above is category in [13] associated to a graph with three vertices, corresponding to B1, B2, B3 and two edges
corresponding to A1, A2, and the choice between ±(1, 0,−1) is analogous to a choice of orientation of the edge
corresponding to A1; similarly for A2.]

Proof of Theorem 10.2. We can compute Exti(k,F) using the projective resolution (104), which is therefore the
kernel and cokernel of the map that µ1 induces on

Hom

 3⊕
j=1

CoSkyBj
(k),F

→ Hom

(
2⊕
i=1

CoSkyAi
(k),F

)
,

which is equivalent to a map

ν :

3⊕
j=1

F(Bj)→
2⊕
i=1

F(Ai). (106)

For i = 1, 2 and j = 1, 2, 3, let αi,j ∈ k be given as

α1,1 = α2,2 = 1, α1,3 = α2,3 = −1, α1,2 = α2,1 = 0. (107)

According to Proposition 10.4, since µ1 takes CoSkyAi,k to CoSkyBj ,k by multiplication by αi,j , it follows that

ν maps F(Bj) to F(Ai) by multiplication by αi,j . But this is precisely the map F(∂). Hence Exti(k,F) for
i = 0, 1 are, respectively, the kernel and cokernel of F(∂).

10.6 A Subtlety of Linear Algebra and Zorn’s Lemma

Let L : U → V be any linear map of (possibly infinite-dimensional) k-vector spaces. Then we get a map:

coker(L∗)→
(
ker(L)

)∗
, (108)

as follows: any ` ∈ U∗ gives, by restriction, a map ker(L) → k, i.e., an element of (ker(L))∗, and if ` − `′ ∈
Image(L∗), then `, `′ agree on ker(L). To know that this map is an isomorphism, one needs to know that any
linear map ` : ker(L) → k extends to a map U → k. This is true if we assume the axiom of choice or Zorn’s
Lemma, for then using Zorn’s lemma, we can find a subspace U ′ ⊂ U such that U splits as a direct sum of
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ker(L) and U ′ ∈ U , and this allows us to extend ` to all of U (defining ` to be zero on U ′, which defines ` on
all of U).

[Even if one does not assume the axiom of choice or Zorn’s lemma, (108) will be an isomorphism in certain
situations: for example, if U has a basis and ker(L) is finite dimensional, then we can perform a finite basis
exchange to have a basis for ker(L) that extends to a basis for U . Note that this holds for L = MW,d(∂) for
any perfect matching W , the values ofMW,d have a basis (indexed by Z or Z≤di for i = 1, 2) and the kernel of
L is finite dimensional.]

On the other hand, the foundations of homological algebra assume Zorn’s lemma, since one uses Baer’s
Criterion to show that k is an injective k-module, which assumes Zorn’s lemma (see, e.g., [17], proof of Bear’s
Criterion 2.3.1, page 39). In fact, to say that k is injective is precisely to say that if A → B is any injection,
then any map A → k is the composition of the map A → B with some map B → k, which implies that any
linear functional on a subspace of B has an extension to all of B. Hence, we will assume Zorn’s lemma for the
rest of this section.

10.7 Proof of Theorem 10.1

Proof of Theorem 10.1. Similar to (104), let us prove that k/B1,B2
has the injective resolution

0→ k/B1,B2

µ0

−→
2⊕
i=1

SkyAi
(k)

µ1

−→
3⊕
j=1

SkyBj
(k)→ 0. (109)

First, we take µ0 to be ιA1,1 ⊕ ιA2,1 with notation as in Proposition 10.3, which yields an injection

µ0 : k/B1,B2
→ I0, where I0 =

2⊕
i=1

SkyAi
(k),

where setting I1 = I0/µ0(k), we have I1(Ai) = 0 for i, 1, 2, and

I1(B1) = I1(B2) = k/{0} = k, I1(B3) = k ⊕ k/diag,

where diag is the diagonal, i.e., the span of (1, 1) in k⊕k. Hence identifying k⊕k/diag with the class of (−1, 0),
we get

I1 '
3⊕
j=1

SkyBj
(k),

with the map µ1 : I0 → I1 being the map taking SkyAi,k to SkyBj ,k being multiplication by αij , where αi,j are
given in (107). Hence for any F we have an exact sequence

0← Ext0(F , k/B1,B2
)←

2⊕
i=1

Homk(F(Ai), k)←
3⊕
j=1

Homk(F(Bi), k)← Ext1(F , k/B1,B2
)← 0,

i.e.,

0← Ext0(F , k/B1,B2
)←

2⊕
i=1

F(Ai)
∗ ←

3⊕
j=1

F(Bi)
∗ ← Ext1(F , k/B1,B2

)← 0.

But in view of the values of the αi,j , the map

2⊕
i=1

F(Ai)
∗ ←

3⊕
j=1

F(Bi)
∗ (110)

above is precisely the dual map of ν in (106). Hence, in view of the isomorphisms (72) and (108), the duals of
kernel and cokernel of ν are the cokernel and kernel (respectively) of the map in (110). This establishes (93)
and hence (94).

The functoriality in F can be verified directly or by appealing to the functoriality of (101).

10.8 Homological Algebra of k-Diagrams, Value-By-Value Evaluation, and Sheaf
Theory

To apply the machinery of homological algebra, one has to verify that k-diagrams form an abelian category, and
to prove Proposition 10.1. As mentioned there, the reader who is so inclined can verify Proposition 10.1 from
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scratch. However, it is simpler to point out that (1) this proposition is well known, and (2) the reader familiar
with sheaf theory on topological spaces can view k-diagrams as equivalent to sheaves of k-vector spaces on a
certain topological space. Let us explain both these points.

First, we remark that, more generally, many convenient notions regarding k-diagrams and their morphisms
can be evaluated “value-by-value,” just as the notions of kernel, image, and cokernel of a morphism in Propo-
sition 10.1. Let us give some further examples of these “value-by-value” evaluations.

10.8.1 Examples of Value-By-Value Evaluation

If F is a k-diagram, then a subdiagram of F refers to any k-diagram, F ′ such that at each P = A1, A2, B1, B2, B3,
F ′(P ) ⊂ F(P ) is a subspace, and such that each restriction map, F ′(ρij), of F ′ is the restriction of F(ρij)
to the subspace F(Bi). In this case one easily verifies that the value-by-value inclusion of F ′ into F gives a
morphism φ : F ′ → F . In this case there is a quotient F/F ′, whose values are F(P )/F ′(P ).

The reader familiar with topological sheaf theory will notice that if we take a value-by-value quotient F/F ′
as above, the result is not generally a sheaf (see, e.g., [16], Section II.1, top of page 65); to get the usual notion
of a quotient sheaf one has to take the extra step of sheafifying the result, i.e., taking the sheaf associated to
the presheaf given by U → F(U)/F ′(U) for open subsets U . For k-diagrams we never need this extra step.

Similarly, for a morphism of k-diagrams φ : F → G, the kernel, image, and cokernel of φ are defined to be
the diagrams whose values at each P = A1, A2, B1, B2, B3 are the kernel, image, and cokernels of φ(P ). Again,
in general topological sheaf theory, the additional step of sheafifying is needed for images and cokernels (see,
e.g., [16], Section II.1, top of page 64, just above Proposition/Definition 1.2).

10.8.2 Why Value-By-Value Evaluation Works

To see why “value-by-value” evaluation works, we appeal to [1], Exposé I, Section 3, Proposition 3.1 and
Corollaire 3.2: consider the category C, whose objects and non-identity morphisms are depicted below.

B1

B2

B3

A1

A2

C (111)

Then a k-diagram is the same thing as a contravariant functor from C to the category of k-vector spaces, which
is called, in [1], Exposé I, a presheaf of k-vector spaces on C. Then Proposition 3.1 and Corollaire 3.2 of [1],
Exposé I, Section 3 implies that for any category, C, the notions of subdiagram, kernel, image, etc., agree with
the value-by-value evaluation above (we also refer the reader to [13] and [12] for similar observations with C
replaced with categories arising from graphs).

10.8.3 k-diagrams and Sheaf Theory

To see that “value-by-value” evaluation works in k-diagrams, one can alternatively appeal to sheaf theory
(e.g., [16], Section II.1) on one particular topological space. Let us explain how.

If X is a topological space on a finite set, say that an open set U ⊂ X is irreducible if U is non-empty and
cannot be written as the union of proper open subsets of X. The set of irreducible open subset, Irred(X), of X
becomes a category under inclusion. Each sheaf, F , of k-vector spaces on X restricts to a presheaf (in the sense
of Grothendieck, i.e., a contravariant functor from Irred(X) to the category of k-vector spaces) of vector spaces
on Irred(X). It is not hard to verify (see, e.g., [12]) that this functor from the category of sheaves of k-vector
spaces on X to presheaves of k-vector spaces on Irred(X) is an equivalence of categories; in other words, one
can reconstruct—up to isomorphism—a sheaf on X by knowing its restriction to Irred(X), and any presheaf on
Irred(X) arises as the restriction of a sheaf on X.

Let X be the finite topological space on the points A1, A2, B1, B2, B3 with a basis of open subsets

{A1}, {A2}, {B1, A1}, {B2, A2}, {B3, A1, A2}.

Then one easily sees that Irred(X) is precisely the category

{B1, A1}

{B2, A2}

{B3, A1, A2}
{A1}

{A2}
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(so, for example, B1, B2, B3 are closed points, and {A1}, {A2} are open subsets, B1 and B3 are specializations
of A1, etc.). Hence Irred(X) in this case is the same thing as the category (111), which is how we build our
diagrams.

We remark that finite topological spaces have the property that each point, P , of the space has a minimal
open subset, UP , that contains it. It follows that the “stalk at P” of a sheaf is simply its value at UP . This is
an alternative way to see that “value-by-value evaluation” works in all finite topological spaces.

We also remark that if P, P ′ are points in a topological space, we say that P ′ is a specialization of P when
the closure of P contains P ′ (see [1], Subsection IV.4.2.2 or [16], Exercise II.3.17). Hence, this notion agrees
with the notion in Definition 10.2.

10.9 The Usual Skyscraper k-Diagrams the Riemann-Roch Theorem

If W : Z2 → Z is a perfect matching, and d ∈ Z2, then we easily check that there is an exact sequence

0→MW,d →MW,d+ei → SkyAi
(k)→ 0. (112)

Furthermore, b1 of any skyscraper k-diagram is 0 since any skyscraper k-diagram is injective, and we easily
check that

b0(SkyAi
(k)
)

= 1.

This therefore mimics the usual short exact sequence in the modern formulation of the Riemann-Roch theorem,
e.g., [16], the proof of the Riemann-Roch theorem, page 296, the sequence

0→ L(D)→ L(D + P )→ k(P )→ 0.

Hence
χ
(
MW,d+ei

)
= χ

(
MW,d

)
+ χ

(
SkyAi

(k)
)

= χ
(
MW,d

)
+ 1,

which is another way of deriving (30). Furthermore, the full strength of Lemma 4.1 as it applies to the Betti
numbers of MW,d and MW,d+ei (as in Corollary 4.1) can also be seen by considering the long exact sequence
that arises from (112), namely

0→ H0
(
MW,d

)
→ H0

(
MW,d+ei

)
→ k → H1

(
MW,d

)
→ H1

(
MW,d+ei

)
→ 0.

10.10 O-Modules and Periodic k-Diagrams

In this section we explain why Serre duality cannot hold in the context of k-diagrams for sheaves the form
MW,d. This also explains why we work both with sheaves of the formMW,d — which most closely mimic Serre
duality — and the simpler k-diagrams I⊕Wd . This also motivates future work of ours [9].

The sheaf theory of algebraic geometry works with sheaves of O-modules, where (X,O) is a locally ringed
space (see, e.g., [16], Sections II.2, page 72 and III.2) We remark that k-diagrams are nothing more than O-
modules over the ringed space (X,O) where X is the five-point topological space described in the previous
subsection, and O = k.

If W : Z2 → Z is a perfect matching that is also r periodic—which is the case in the Baker-Norine rank and
related rank functions [2, 5]—then the k-diagrams MW,d are O-modules for a much larger sheaf of rings (i.e.,
k-diagram of rings) over the same space, namely the diagram O = Or = Ok,r whose values are for i = 1, 2:

O(Ai) = k[xi, 1/xi], O(Bi) = k[yi], O(B3) = k[v, 1/v], (113)

whose restriction maps take v to xr1, x
−r
2 and take yi to 1/xi, i.e.,

O(ρi,i)(yi) = 1/xi (for i = 1, 2), O(ρ3,1)(v) = xr1, O(ρ3,2)(v) = x−r2 . (114)

We depict this k-diagram of rings in Figure 11. For r = 1, (X,O) is the Riemann sphere and the MW,d

are line bundles, but for r ≥ 2 this is a much more mysterious space.10 [This is not an orbifold; perhaps it is
a cover of an orbifold reflecting a Čech cohomology computation or something related.] We believe there is a
duality theorem akin to Serre duality, involving the k-diagrams MW,d as O-modules. We plan to address this
in a future work. This may shed more light on the MW,d. It is also related to our discussion of Serre functors
in the next subsection.

Note that our four basic k-diagrams (Figure 6) are not Ok,r modules. Hence in works like [9], we cannot
write MW,d (which is a Ok,r-module if W is r-periodic) as a sum of our four basic k-diagrams.

10We thank Ehud de Shalit for a discussion of Ok,r, and Luc Illusie for questions regarding MW,d and Ok,r-modules.
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Or(B1) = k[y1]

Or(B2) = k[1/x2]

Or(B3) = k[v, 1/v]

Or(A1) = k[x1, 1/x1]

Or(A2) = k[x2, 1/x2]

y1 7→ 1/x1

y2 7→ 1/x2

v 7→ xr1

v 7→ x−r2

Figure 11: The Diagram of Rings, Or = Ok,r: this k-diagram has more structure: its values are rings, and
restriction maps are also morphisms of rings. Hence Or = Ok,r is much larger and more structured; hence for
any O-modules F ,G, HomO(F ,G) is much smaller than Homk(F ,G). This smallness is crucial if we want to
get a stronger form of Serre duality.

10.10.1 Serre Duality, k-modules, and Some “Bad News”

Let us give a bit more detail regarding k-modules and Ok,r. The usual statement of Serre duality (e.g., [16]
(e.g., Theorems 7.1 and 7.6, Chapter III) gives isomorphisms:

ExtiOX
(F , ωX)→ Hn−i(X,F)∗, for 0 ≤ i ≤ n,

for an n-dimensional projective scheme, X, and a coherent sheaf, F (the subscript O = OX is understood in [16],
but here we add this for emphasis). In particular, in the case of curves, and i = 0, there is an isomorphism

HomOX
(F , ωX)→ H1(X,F)∗ (115)

for coherent sheaves, F .
Now notice that if (X,O) is any ringed space, and F is any sheaf of O-modules, then the group

H1(X,F)

is the same whether we view F as (1) a sheaf of abelian groups, or (2) a O-module (Proposition 2.6, Chapter III).
We emphasize that this holds in the generality of ringed spaces, not merely the locally ringed spaces of algebraic
geometry. In particular, H1(X,F) is the same in when computed in the category of O-modules with O = k or
O as in (113) and (114).

The above leads to some “good news” and some “bad news” if we work with O-modules with O = k, i.e.,
sheaves of k-vector spaces, i.e., k-diagrams: indeed, ωX in (115) is uniquely determined up to isomorphism and
determined by

H1(F)∗ ' HomO(F , ωX) (116)

plus the usual “functoriality” that one insists in Serre duality (this is a special case of “Yoneda’s lemma,” i.e.,
the uniqueness of an object representing a functor). To concretely compute ωX , assuming that this is to hold
all F ’s that are k-diagrams with whose values are finite dimensional vector spaces, then this must hold for the
k-diagrams CoSkyP (k) for P = A1, A2, B1, B2, B3; if so, using (95) we have

ωX(P ) ' Homk

(
k, ωX(P )

)
' Homk

(
CoSkyP (k), ωX

)
' H1(CoSkyP (k))∗,

which determines the dimensions of ωX(P ); the functoriality determines the restriction maps of ωX(P ), and we
easily see that

ωX = k/B1,B2
.

And, indeed, we easily check that (116) does hold for ωX = k/B1,B2
for all large class of k-diagrams, F , including

our four basic k-diagrams, and therefore on the MW,d and sums thereof.
Hence, the “good news” is that there is a “dualizing sheaf” k/B1,B2

, and we have

H1(F)∗ ' Homk

(
F , k/B1,B2

)
.

for a very general class of k-diagrams, including the MW,d.
At the same time, here is some “bad news.”
First, the dualizing sheaf k/B1,B2

reflects the geometry of k and k-diagrams, and nothing more interesting.
It is likely that the dualizing sheaf ωX in (116) for O = Ok,r may reflect more interesting “geometry.” Moreover,
if we are primarily interested in theMW,d, which are not Ok,r line bundles and don’t seem to be even coherent
Ok,r-modules, then the appropriate dualizing sheaf might reflect the geometry of MW,d.
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Second, stronger forms of duality doesn’t quite work; this is explained in [10]; see, for example, Theorem 11.2
the remark beneath it. The point is that one might expect a stronger form of Serre duality, whose verification
is — at least in principle — easier, since it involves only “local” computations in the derived category.

We intend to make some remarks on the above in [9] and further research.

10.11 The Serre Functor on Chains of k-Diagrams

In this section, we briefly discuss so-called Serre functor, S, and show that S(k) = k/B1,B2
[1], which explains

Theorem 10.1.
To motivate our discussion of the Serre functor, notice that Theorem 10.1 yields an isomorphism

∀i ∈ Z, Exti(k,F)∗ ' Hi(F)∗ → Ext1−i(F , k/B1,B2
)

and for any P = A1, A2, B1, B2, B3 we have an isomorphism

∀i ∈ Z, Exti
(
CoSkyP (k),F

)∗ → Ext1−i(F ,SkyP (k)
)
.

It follows that if G is a sum k⊕CoSkyP (k), there is no duality theorem that has a single k-diagram associated
to G in a duality theorem involving

Exti(G,F)∗.

So even if one seeks a duality theorem valid only for k-diagrams, one is pretty much forced to express this by
working in a larger context. The derived category is such a context, and it is a common tool for expressing
duality theorems.

Hence, we assume that the reader is familiar with the derived category (see [17], Chapter 10, or [15],
Chapter I), and we will describe the so-called Serre functor in these terms. Since each k-diagram has a two-
term injective and a two-term projective resolution, it is simplest to work in D = Db of bounded chains of
k-diagrams, each of whose values are finite-dimensional k-vector spaces11. The Serre functor, S, (see, e.g., [6,7]
or [12], Section 2.12 and the references therein) is the functor that takes an object G ∈ D to the functor
S(G) : D → V, where V is the category of finite dimensional k-vector spaces and G 7→ S(G) is the functor,

F 7→ HomD(G,F)∗

(all Hom sets are assumed to be finite-dimensional k-vector spaces); if S(G) is representable, then there is a
G′ ∈ D such that

HomD(G,F)∗ ' HomD(F ,G′),

and we write S(G) = G′; if so then G′ is uniquely determined up to unique isomorphism. The recipe to compute
the Serre functor in [12] (written “left-to-right” or !→ ∗), in our terms, is to observe that

S
(
CoSkyP (k)

)
= SkyP (k),

since if F equals · · · → F−1 → F0 → F1 → · · · is any bounded chain of k-diagrams, then since CoSkyP (k) is
projective, viewing CoSkyP (k) as a complex in degree 0 we have

HomD
(
CoSkyP (k),F

)
= HomK

(
CoSkyP (k),F

)
= H0

(
F(P )

)
,

where HomK denotes chain maps modulo homotopy, and H0(F(P )) denotes the 0-th cohomology group of the
exact sequence

· · · → F−1(P )→ F0(P )→ F1(P )→ · · ·

Similarly, since SkyP (k) is injective, we have

HomD
(
F ,SkyP (k)

)
= HomK

(
F ,SkyP (k)

)
= H0

(
F(P )

)∗
.

It follows that if F is any chain that is 0 outside of degree 0, and is a sum of k-diagrams of the form CoSkyP (k)
in degree 0, then S(F) is represented by exchanging each CoSky with a Sky. It then follows by induction that
if G is a chain of sums of coskyscraper k-diagrams (each of finite dimension), then the recipe of exchanging the
coskyscrapers with skyscrapers computes the Serre functor: for the inductive step, one can use Lemma I.7.2
of [15], which states that for any complex G equal · · · → G−1 → G0 → G1 → · · · and n ∈ Z there is a
distinguished triangle

τ≥n(G)→ Gn → τ>n(G)→ τ≥n(G)[1],

11As mentioned in [12], since our k-diagrams involve only a finite number of values and restriction maps, to work in homological
algebra we need to take only finite limits of our diagrams, which are again diagrams whose values are finite dimensional. See also
the last paragraph of this section.
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and to apply the five-lemma.
Lemma 10.1 shows that k is isomorphic to the chain

2⊕
i=1

CoSkyAi
(k)

µ1−→
3⊕
j=1

CoSkyBj
(k)

with the Ai coskyscrapers in degree 0. Hence S(k) is given by

2⊕
i=1

SkyAi
(k)

µ̃1−→
3⊕
j=1

SkyBj
(k)

with the Ai skyscrapers in degree 0, and where µ̃1 is µ1 with each morphism of coskyscrapers replaced by
the corresponding one of skyscrapers. The proof of Theorem 10.1 shows that µ1 of (109) is the map with the
coefficients (107) which are the same as for µ1; hence µ̃1 = µ1. It follows that S(k) is isomorphic to the element
of D which consists of the single non-zero k-diagram k/B1,B2

in degree −1, i.e., the element k/B1,B2
[1]. Hence

S(k) ' k/B1,B2
[1].

We remark that—as mentioned in [12]—because k-diagrams are built on a diagram with finitely many
values and morphisms, there is no problem in working with k-diagrams whose values are finite-dimensional
vector spaces. The problem is that this does not allow us to work with the MW,d, and the Hom sets involving
the MW,d are not finite dimensional. One might still be able to work in this larger context and infer that
S(k) = k/B1,B2

[1] in such a context, as this equality is essentially the content of Theorem 10.1. Finally, we
remark that the study of O-modules with O = Ok,r as in the previous subsection, in the case where W is
r-periodic, may allow for a calculation of the Serre functor in some sense.

A Remarks Related to the Definition of a Dual Virtual
Vector Space

In this appendix, we make some remarks to indicate why Definition 9.1 may be part of a larger notion of a
“morphism” from one virtual k-vector space to another. However, our remarks do not yield a satisfactory notion
of a morphism that is compatible with our notion of equivalence of two virtual k-vector spaces. This appendix
is independent of the rest of this paper.

While we limit our discussions to virtual vector spaces, ideally one would have similar remarks for virtual
objects of more general categories (such as the category of k-Fredholm maps and of k-diagrams).

We hope that future work will give a better justification for Definition 9.1. Ideally, future work would
construct a category (or bicategory) of virtual vector spaces such that a morphism from V1 	 V2 to k = k 	 0
is precisely V ∗1 	 V ∗2 .

Note that if V1, V3 are finite dimensional k-vector spaces, then V1⊗kV3 and Homk(V1, V3) are k-vector spaces,
both of dimension dim(V1) dim(V3). Hence, the following definition maintains this dimension under equivalence.

Definition A.1. If V1, V2, V3, V4 are four finiite dimensional k-vector spaces, then we define

Hom
(
V1 	 V2, V3 	 V4) = Hom(V1, V3)⊕Hom(V2, V4)	Hom(V1, V4)	Hom(V2, V3)

and
(V1, V2)⊗ (V3, V4) = (V1 ⊗ V3)⊕ (V2 ⊗ V4)	 (V1 ⊗ V4)	 (V2 ⊗ V3).

The problem with the above definition is that if V1 	 V2 is equivalent to V ′1 	 V ′2 , as virtual vector spaces,
and similarly with V3 	 V4 and V ′3 	 V ′4 , it is not clear how to relate the two sets

Hom
(
V1 	 V2, V3 	 V4

)
, Hom

(
V ′1 	 V ′2 , V ′3 	 V ′4

)
.

To make Definition A.1 compatible with equivalence, one might be able to change the Hom sets to get a
category, analogous to how one constructs the derived category (i.e., where one works with Homs of chain
maps by first taking chain maps modulo homotopy equivalence, and then one “localizes” the category so that
quasi-isomorphisms become isomorphisms).

However, if we ignore the above difficulties, and merely work with Definition A.1 as is, this definition gives

Hom(V1 	 V2, k) = Hom(V1 	 V2, k 	 0) = (V ∗1 , V
∗
2 ),
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which therefore gives that Definition 9.1 agrees with the usual definition. We also note that an “element” of
V1 	 V2 would be an element of

Hom(k, V1 	 V2) = Hom(k 	 0, V1 	 V2) = Hom(k, V1)	Hom(k, V2)

which suggests that an element of V1 	 V2—if such a thing makes sense—would be a formal difference of an
element of V1 “minus” an element of V2.

We also note that for Hom in Definition A.1, there is a natural composition of

µ ∈ Hom(V1 	 V2, V3 	 V4), ν ∈ Hom(V3 	 V4, V5 	 V6),

namely if µij : Hom(Vi, Vj) with i = 1, 2 and j = 3, 4, and νj` : Hom(Vj , V`) with j = 3, 4 and ` = 5, 6, then we
could set ν ◦ µ to be the maps (ν ◦ µ)i` given by

(ν ◦ µ)i` =
∑
j=3,4

νj` ◦ µij .

Under this composition law, Hom is associative, and has an identity morphism for V1	 V2, namely IdV1
⊕ IdV2

.
A specific problem with the above definitions is that the virtual vector k	k is equivalent to 0, and yet there

is no isomorphism between these virtual vector spaces, since any morphism in k	k that factors through 0 must
be the zero map, and hence cannot equal the identity map of k 	 k.

We remark that an isomorphism of k-vector spaces V ∗1 → V3 is the same as a perfect (or non-degenerate)
pairing, V1 × V3 → k, and such a pairing extends to a map V1 ⊗ V3 → k. Hence, as an alternative to working
with “dual spaces” and making sense of what constitutes an “isomorphism”

(V1 	 V2)∗ → V3 	 V4, (117)

one could try to define a reasonable notion of a “pairing” and “perfect pairing”

(V1 	 V2)× (V3 	 V4)→ k. (118)

In fact, the isomorphism (117) in Theorem 9.3 is really based on a pairing V1 × V3 and one V2 × V4. Therefore,
if one accepts that two such pairings should give rise to a pairing (118), then one can avoid any reference to
dual spaces and isomorphism (117). Again, the link between pairings and tensor products is that in an ideal
setting, a pairing (118) would “extend” to a map

(V1 	 V2)⊗ (V3 	 V4)→ k.

Hence, one starting point for finding an ideal setting is to search for a notion of the tensor product of virtual
vector spaces, which may be related to Definition A.1 above.

Another approach to making the formal differences of k-vector spaces (or of k-Fredholm maps, or of k-
diagrams, etc.) is to declare Hom(V1 	 V2, V3 	 V4) to equal any morphism

f : V0 ⊕ V1 ⊕ V4 → V0 ⊕ V2 ⊕ V3,

since equivalence of virtual k-vector spaces is the case when a map as above is an isomorphism. This notion of
morphism does have a composition law, although it seems that the composition law is not associative (hence
we may get some type of 2-category or bicategory): namely, if g ∈ Hom(V3 	 V4, V5 	 V6), i.e.,

g : V ′0 ⊕ V3 ⊕ V6 → V ′0 ⊕ V4 ⊕ V5,

one could add to f the identity map idV ′0⊕V6
and get a composition

(V ′0 ⊕ V6)⊕ (V0 ⊕ V1 ⊕ V4)
idV ′0⊕V6

⊕f
−−−−−−−→ (V ′0 ⊕ V6)⊕ (V0 ⊕ V2 ⊕ V3)

which can be composed with the morphism

(V0 ⊕ V2)⊕ (V ′0 ⊕ V3 ⊕ V6)
idV0⊕V2

⊕g
−−−−−−−→ (V0 ⊕ V2)⊕ (V ′0 ⊕ V4 ⊕ V5)

by rearranging the direct sums of the domain of idV0⊕V2
⊕g, which upon rearranging direct sums is a map

V ′′0 ⊕ V1 ⊕ V6 → V ′′0 ⊕ V2 ⊕ V5, where V ′′0 = V0 ⊕ V ′0 ⊕ V4.

However, it is not clear to us that this notion makes the Hom set from a virtual k-vector space to another
having dimension equal to the product of the two vector spaces, which seems like a desirable property.
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