
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 4:3 (2024) Article #S2R20
https://doi.org/10.54550/ECA2024V4S3R20

Ending States of a Special Variant of the Chip-Firing Algorithm

Tanya Khovanova and Rich Wang

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Email: tanya@math.mit.edu richwang@mit.edu

Received: August 6, 2023, Accepted: December 25, 2023, Published: February 2, 2024
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: We investigate a special variant of chip-firing, in which we consider an infinite set of rooms on a
number line, some of which are occupied by violinists. In a move, we take two violinists in adjacent rooms, and
send one of them to the closest unoccupied room to the left and the other to the closest unoccupied room to the
right. We classify the different possible final states from repeatedly performing this operation. We introduce
numbers R(N, `, x) that count labeled recursive rooted trees with N vertices, ` leaves, and the smallest rooted
path ending in x. We describe the properties of these numbers and connect them to permutations. We conjecture
that these numbers describe the probabilities of ending with different final states when the moves are chosen
uniformly.

Keywords: Cayley trees; Chip-firing; Permutations; Probability
2020 Mathematics Subject Classification: 05A19; 05C57

1. Introduction

The chip-firing process on a number line, in which one takes some number of chips at position i and “fires”
some of them to position i − 1, and some of them to position i + 1, has been studied extensively. It was first
described by Spencer [10] as a balancing game on a collection of vectors in the max norm. In Spencer’s variant
of chip-firing, one takes all of the chips in a pile and split them as evenly as possible among the neighboring
piles. The classical variant of chip-firing, in which one takes two chips from a pile and “fires” one to the pile
on its left and one to the pile on its right, was later explored by Anderson, Lovász, Shor, Spencer, Tardos, and
Winograd [1].

The chip-firing process was found to be generalizable to many other fields and was moved from a line to any
graph. Bak, Tang, and Wiesenfeld [2] examined chip-firing on a graph in the context of dynamical systems,
finding the process to be related to systems like pendulums and the stock market. Dhar [6] expanded upon this
by showing that their model satisfied abelian dynamics and coined the term “abelian sandpile model.”

One important property of chip-firing algorithms is confluence, or the property where the final state does
not depend on the order of moves performed, which was first analyzed by Björner, Lovász, and Shor [3], and is
a consequence of Newman’s Lemma [8]. This property can be found in both the classical chip-firing algorithm
and in many modifications, such as the one analyzed by Hopkins, McConville, and Propp [7].

However, a slight modification to the classic chip-firing process changes the situation significantly. We
instead take two chips at positions i and i + 1 and “fire” them to the closest positions to their left and right,
respectively, that do not have a chip. This new chip-firing variant is not confluent, which makes it interesting
to study. Standard chip-firing operations are usually local, meaning that each move they perform changes the
position of the chips by a fixed distance. Our dynamical system can move a chip arbitrarily far away from the
original position. Darij Grinberg suggests calling this operation a two-sided dispersion.

To describe our process, we use the analogy of violinists staying in hotel rooms. The following problem is
at the center of our paper.

Problem. Consider a hotel with an infinite number of rooms arranged sequentially on the ground
floor. The rooms are labeled from left to right by integers, with room i being adjacent to rooms
i− 1 and i+ 1. Room i− 1 is on the left of room i, while room i+ 1 is on the right.

A finite number of violinists are staying in the hotel; each room has at most one violinist in it. Each
night, some two violinists staying in adjacent rooms (if two such violinists exist) decide they cannot
stand each other’s noise and move apart: One of them moves to the nearest unoccupied room to the

Tanya Khovanova and Rich Wang

left, while the other moves to the nearest unoccupied room to the right. This keeps happening for
as long as there are two violinists in adjacent rooms. Prove that this moving will stop after a finite
number of days.

Example 1.1. Suppose we have four violinists with their initial placement 0001111000. From the initial state,
we have three options, which we call L, M, and R. Regardless of which is chosen, in the next state, we have two
options, which we call L and R. After that, we have only one move in each case. This is shown in Figure 1.

0001111000

0010011100

0010100110

0010101001

0010110010

0011001010

0100101010

0011001100

0100101100

0100110010

0101001010

0011010010

0100110010

0101001010

0011100100

0100110100

0101001100

0101010010

0110010100

1001010100

Figure 1: Tree diagram for possible moves for 4 violinists.

In Figure 1, we can also see that there are 5 different final states. The lack of a fixed final state opens up
many possible areas of study on the possible final states.

We start with the solution to the problem in Section 2. We introduce some important definitions, including
the centroid and the sumtroid, and cover the relevant preliminary results in Section 3. We also introduce an
object of our study— a clusteron, which is an initial state that consists of a set of consecutive occupied rooms
and allows for rooms that have multiple occupants.

In Section 4, we show that starting from a clusteron, we always achieve a final state with single occupancy
rooms. We also introduce a bijection from states with only one violinist per room to a state that considers the
sequence of clusterons in that state.

We characterize all possible final states of a single clusteron in Section 5. In particular, we show that all final
states have a single gap of size 2 and the rest of their gaps size 1. We also show that final states are uniquely
determined by their centroids.

Section 6 is devoted to analyzing properties of specific intermediate states of clusterons, or states where the
chip-firing process has not necessarily terminated.

In Section 7, we conjecture that if possible moves are made to be equally probable for any clusteron with
single-occupancy rooms, then the probability of achieving each of the claimed final states from Section 5, up
to translation, is the same. In particular, in Figure 1, one can see that if one starts at the top and traverses
down each branch of the tree with equal probability, then the probabilities of obtaining a state congruent to
10101001, 10100101, and 10010101 up to translation and ignoring zeroes on the boundary, are equal, 1

3 in each
case.

In Subection 7.2, we introduce numbers R(N, `, x) that count the number of labeled recursive routed trees
(also known as increasing Cayley trees) with N vertices, ` leaves, and with the smallest rooted path ending in
x. We conjecture that R(N, `, x) equals (N − 1)! times the probability that the initial state with N violinists
ends in a final state with a particular sumtroid which can be defined in terms of ` and x. We prove a recursive
formula for numbers R(N, `, x).

In Section 8, we describe the numbers R(N, `, x) in terms of permutations. We show how these numbers are
connected to 2-Eulerian and Eulerian numbers.

Section 9 contains additional data.

2. Solution to the Problem

We denote the total number of violinists as N . Let us regard the violinists as indistinguishable (i.e., we do not
care which violinist is in which room, but only care about which rooms are occupied). Thus, we can identify
any state with a finite subset of integers.

Since we only care about which rooms are occupied, we can redefine the operation as follows: Choose two
adjacent violinists v1, v2, and say v1 is to the left of v2. We move v1 into the room directly on his left. If this
room is currently occupied by some violinist v3, then we move v3 into the room on his left as well. And so on,
until a violinist that we move enters an unoccupied room. A similar operation will occur for v2, but moving
to the right. This way the order of the violinists from left to right is always preserved. If there are multiple

ECA 4:3 (2024) Article #S2R20 2

Tanya Khovanova and Rich Wang

violinists in a room, then we consider them to be ordered left to right in some manner. We call this adjusted
procedure chip-pushing.

When considering the operation as chip-pushing, the leftmost violinist can only move to the left, while the
rightmost only to the right. Moreover, the leftmost violinist will continue to be the leftmost violinist in all
future states. A similar statement holds true for the rightmost violinist.

We define a gap to be the number of unoccupied rooms between two occupied rooms that do not have any
other occupied rooms between them, and an x-gap to be a gap of size x.

We define the span of a state to be the number of rooms between the leftmost and rightmost violinists,
including the rooms that these two violinists occupy.

Theorem 2.1. The process of violinists moving to different rooms cannot continue indefinitely.

The proof is known [5], but we want to present our solution utilizing the idea of chip-pushing.

Proof. We prove that there exists an upper bound on the maximum possible number of times that the chip-
pushing operation can be performed on a state with N violinists by using induction. If we have 1 violinist, then
no operations can be performed. If we have 2 violinists, then the final state is achieved after one move. Now we
show that if there exists an upper bound bN for N violinists, there also exists an upper bound for the number
of moves made by N + 1 violinists.

We think of our operation as chip-pushing. Thus, the order of the violinists is preserved. We denote the
i-th violinist from the left to be violinist vi. Consider the leftmost and rightmost violinists on the number line,
v1 and vN+1, respectively. If our process does not terminate for N + 1 violinists, then one of v1 or vN+1 must
make an infinite number of moves, or else the process will end by our inductive assumption. So say without
loss of generality that vN+1 makes an infinite number of moves. After vN+1 moves 2NbN + 1 times, the span
of any state following these moves must be greater than 2NbN + 1. Thus, by the pigeonhole principle, there
exists a gap of size at least

⌈
2NbN+1

N

⌉
= 2bN + 1, between some two violinists vi and vi+1, for some 1 ≤ i ≤ N .

If we consider the sets of violinists S1 = {v1, v2, . . . , vi} and S2 = {vi+1, vi+2, . . . , vN+1}, then within each set,
at most bi and bN+1−i moves can be performed, respectively, both of which are less than or equal to bN . As a
result, because the gap between vi and vi+1 has size at least 2bN + 1 > bN+1−i + bi, they will never be adjacent.
This means that no more moves can be performed with one violinist from S1 and one violinist from S2. But
the number of moves that can be performed within each set is bounded by constants bi and bN+1−i. Thus, the
total number of operations for N + 1 violinists is bounded as well.

3. Preliminaries

In this section, we define a few terms that will be used throughout the paper. We allow several violinists in a
single room.

We are interested in studying the initial states where violinists occupy some number of consecutive rooms.
We also allow having several violinists per room. We call such initial states clusterons. The original problem
corresponds to a specific case when each room is initially occupied by a single violinist. We call such states flat
clusterons. Example 1.1 shows all possible moves starting from a flat clusteron with N = 4 violinists.

We define the size of a clusteron as the total number of violinists occupying some room in it. The size of a
clusteron will be denoted by N , where N > 0.

Suppose ai is the number of violinists in room i in state S. Then we build the Laurent polynomial

Q(S, t) =
∑

ait
i.

We can express the total number of violinists N as Q(S, 1).
The entropy of state S is defined as Q(S, 2); see [5].
We define the centroid, C(S) as

C(S) =
1

N

∑
aii.

Let K = NC denote the sumtroid of a state, where C is the centroid of the state. In particular, K also
equals the sum of the room numbers of all occupied rooms.

Equivalently,

C(S) =
1

N
Q′(S, 1) and K = Q′(S, 1).

Suppose we can make a move on the rooms (i, i+1), such that `−1 rooms to the left of room i are occupied,
and r− 1 rooms to the right of room i+ 1 are occupied. We call ` and r the left and right neighborhoods of the
move, respectively.

The following proposition in the case of flat clusterons was proven in [5]. We repeat the proof for a more
general case of any state that allows a move.

ECA 4:3 (2024) Article #S2R20 3

Tanya Khovanova and Rich Wang

Proposition 3.1. Given any state that has a move, the entropy of a state increases after a move.

Proof. Given a move with ` and r being left and right neighborhoods, the state polynomial changes by(
ti−` + ti+1+r

)
−
(
ti + ti+1

)
. The entropy of the state changes by

(
2i−` + 2i+1+r

)
−
(
2i + 2i+1

)
. Because

2i+1+r > 2i + 2i+1 for all values of i, this change is always positive.

In particular, given a move with ` and r being left and right neighborhoods, the centroid changes by r−`
N ,

and the sumtroid changes by r − `. This implies the following lemma.

Lemma 3.1. The centroid (sumtroid) remains constant after a particular move if and only if the right and left
neighborhoods of the move are the same.

4. Initial Results and Bijection to Consecutive Groups
of Rooms

Our definition of the centroid is dependent on labeling the rooms. If we change the label of every room from a
to a+ x, where x, the centroid of the state will increase by x too. We allow x to be an integer or half-integer.
If x is a half-integer, the new labeling for rooms becomes by half-integers too. By default, we fix the labeling
so that the centroid (and sumtroid) of any starting state is 0. If N is odd, the labels are integers. If N is even,
the labels have a fractional part equal to 1

2 .
We continue with Example 1.1 once again.

Example 4.1. Consider the starting state with 4 violinists in rooms − 3
2 , − 1

2 , 1
2 , and 3

2 . For the first move, we
have three choices L, M, and R (for left, middle, and right). For the second move, we have two choices L and
R. Table 4.1 shows the achievable final states, the moves that lead to them, and their corresponding sumtroids.
Notice that one of the final states can be achieved by two different sequences of moves.

Final State Moves Sumtroid
0010101001 LL 3
0100101010 LR 1
0101001010 ML, MR 0
0101010010 RL −1
1001010100 RR −3

Table 1: Final states from flat clusteron of size 4 with sumtroid values.

In our new setup, when we allow several violinists in a room, it is not clear that we always have an available
move. If we start with one room with several violinists, the moves are not defined. We call a room an isolated
room if both of its neighboring rooms are empty. We also call a room a crowded room if it has more than one
violinist in it.

Theoretically, it might be possible to start with a clusteron and, after some number of moves, reach an
isolated room with more than one violinist. We do not have moves for this case. However, Proposition 4.1
shows that if we start with a clusteron with more than one room, we do not get into such a predicament.

Proposition 4.1. Consider a state that originates from a clusteron with size greater than 1. From this state,
it is impossible to reach a state in which there exists a crowded isolated room.

Proof. Assume for the sake of contradiction that there exists some sequence of moves for a clusteron that creates
an isolated room ri, and let a1, a2, . . . , aj be the shortest such sequence. Move aj must include one of rooms
ri − 1 and ri + 1, or a1, a2, . . . , aj−1 would be a shorter sequence.

Thus, aj must move violinists in one of the following pairs of rooms: (ri − 2, ri − 1), (ri − 1, ri), (ri, ri + 1),
or (ri + 1, ri + 2). But moving violinists in rooms (ri− 2, ri− 1) moves the violinist in room ri− 1 to the closest
unoccupied room to his right. However, room ri is already occupied, meaning that the violinist from room ri−1
will either move into room ri +1, or move past room ri +1. In either case, room ri +1 will be occupied after aj ,
creating a contradiction. Similarly, the move (ri − 1, ri) will move one of the violinists in room ri to the closest
unoccupied room to the right of room ri, guaranteeing that ri + 1 is occupied after aj . After this move, both
rooms ri and ri + 1 would still be occupied, and we would be able to perform another move, contradiction. By
symmetry, moving one of the pairs (ri, ri + 1) or (ri + 1, ri + 2) would result in room ri− 1 being occupied after
aj , contradiction.

Theorem 4.1. All final states of a clusteron of size greater than 1 have single occupancy rooms.

ECA 4:3 (2024) Article #S2R20 4

Tanya Khovanova and Rich Wang

Proof. By Proposition 4.1, if we are ever in a state in which there exists a room with multiple occupants, then
one of its neighboring rooms must be occupied, and thus we cannot be in a final state.

We define a flat near-clusteron to be a finite consecutive set of single occupancy rooms with exactly one
unoccupied room between the leftmost and rightmost occupied rooms in the set. The size of a flat near-clusteron
is defined as the number of occupied rooms in it.

We define a propagated state of a clusteron to be any state that has originated from a clusteron.
Before concluding this section, we give an alternate representation of the problem in terms of flat clusterons,

which allows us to describe states in shorter form.
Define a suite to be the inclusion-maximal set of occupied rooms. To each suite, we assign a number equal

to the number of violinists in the suite. In a suite-state, a run of i consecutive zeroes corresponds to i+1 empty
rooms in a room-state. Any nonzero number x in a suite-state corresponds to a run of x consecutively occupied
rooms in a room-state.

Consider a bijection B between single occupancy room-states and suite-states, where we replace a run of
ones with the number of ones in a run, and remove one of the zeros between two consecutive runs of ones. For
example, B(1011001) = 1201.

We define a move on a state of suites as follows. Whenever we have a suite with more than k > 1 violinists,
send 0 < x < k occupants to the suite directly to the left and k − x occupants to the suite to the right, leaving
0 violinists in the original suite.

We define the formula for the centroid of a state of suites to be the same as the formula to obtain the value
of the centroid of a state of rooms.

We now show that, given a room-state S1 and a move from S1 to S2, there exists a move on B(S1) such that
the resulting state is B(S2). We also show that if we have states of rooms S1 and S2 and states of suites S′1 and
S′2 such that B(S1) = S′1 and B(S2) = S′2, and there exists a move that can be performed to S1 to turn it into
state S2, then the corresponding move turning S′1 into S′2 will have the same impact on the value of centroid of
S′1 as the original move does on the value of the centroid of S1.

Theorem 4.2. The bijection B preserves moves and centroids.

Proof. First, we show that B preserves moves. Consider a room-state S. Suppose our move is from the k-th
run of consecutive rooms, which has x+y consecutive rooms, and splits the run into two separate runs of x and
y consecutive rooms, creating a state S′. Performing the corresponding move on B(S), which is splitting the
k-th nonempty suite of B(S) by moving x of the violinists there into the room on the left and y of them into
the room on the right, creates the suite-state B(S′), as when moving from S to S′, the x violinists who move to
the left will join the run of consecutive rooms to their left if they were previously separated by a single empty
room, and be their own run of consecutive rooms if not. Similar arguments can be made for the y violinists
who move to the right.

The operation turning a move on a room-state into a move on a suite-state is reversible, which proves the
reverse direction.

Now we show that B preserves centroids. All B does is switch the number of people in each room and the
distance each violinist travels. Because the change in the centroid for each move is calculated by the quantity

distance moved · number of violinists that move that distance

total number of violinists
,

and B preserves the value of both the numerator and denominator, we conclude.

For an example of how moves are preserved, the moves for the new action with suites in Figure 2 correspond
to the old action in a flat clusteron of size 4 in Figure 1.

4

103

1102

11101

1201

2011

10111

202

1012

10201

11011

2101

10201

11011

301

1021

1102

11101

2011

10111

Figure 2: New action, with suites.

ECA 4:3 (2024) Article #S2R20 5

Tanya Khovanova and Rich Wang

5. Final States of Clusterons

For any state S, let us denote the set of all occupied rooms together with all neighboring rooms as S′. We have
that |S′| ≤ 3|S|. We also define Si to be the state after the i-th move has been made.

Proposition 5.1 (Grinberg [5]). If a room is occupied or neighbors an occupied room, then the same is true
for future states: S′i ⊂ S′i+1.

Using this, we can prove a statement on the sizes of gaps in final states.

Proposition 5.2. All final states of a clusteron only have gaps of size 1 or 2.

Proof. No final state can have a gap of size 0, as then it would still be possible to perform a move. Assume
for the sake of contradiction it is possible to have a gap of size larger than 2, and that some sequence of moves
results in a gap of size larger than 2 between rooms ri and ri + j, for some j > 3. Notice that rooms ri + 1,
ri + 2, and ri + 3 are empty.

Because a flat clusteron has an initial state with one violinist in multiple consecutive rooms, rooms ri through
ri + j must all have been occupied by a violinist at some point due to the way that our chip-pushing operation
is defined. But by Proposition 5.1, this means that room ri +2 should either be occupied by or neighbor a room
occupied by a violinist in the final state, contradiction.

Our goal is to describe all possible final states of clusterons. We start by studying final states up to
translation. In other words, given a state S, we only consider the segment of rooms starting from the first
occupied room to the last occupied room and disregard the absolute index of each room, only caring about the
relative distances. We call this the shadow of S.

We define the shadow FN,k to be the shadow that has N violinists, N − 2 gaps of size 1, and 1 gap of size
2, which is in between the k-th and (k + 1)-st occupied rooms. For example, the shadow F3,2 is 101001.

We introduce the set FN , which depends on N , to be the set of all shadows with N violinists that have
N − 2 gaps of size 1 and 1 gap of size 2. Equivalently, we can write

{FN,i | 1 ≤ i ≤ N − 1} = FN .

Our goal is to prove the following theorem.

Theorem 5.1. The set FN equals the set of all final shadows of a clusteron for all N > 1, except for the
clusterons 12 and 21.

For the clusteron 12, there only exists one possible set of moves before reaching an ending state: 12 →
1011→ 11001→ 100101. A similar statement holds true for the clusteron 21. Both of these can only reach one
of the final shadows in the set FN = {100101, 101001}.

The theorem is equivalent to proving that all states with span 2N and no two violinists in adjacent rooms
are possible final states and the only possible final states for all clusterons except for the two special cases in
the example above.

Before we can prove Theorem 5.1, we first need to prove a few lemmas.
By Proposition 5.2, we know that gaps in the final state can only be of size 1 or 2. We plan to prove that

all final states have exactly one gap of size 2. However, an intermediate state might have several gaps of size 2.

Lemma 5.1. In any propagated state S from a clusteron, there will always exist at least one pair of two
consecutive occupied rooms between any two gaps of size 2 in S.

Proof. Assume the contrary. Let state S be the first state where there does not exist a pair of two consecutive
occupied rooms between two gaps of size 2. Say that in state S, the closest two gaps of size 2 satisfying this
property are at rooms (i, i+ 1) and (j, j + 1), where i+ 1 < j − 1. Because this is the first such state, the move
made right before reaching state S must have been performed on two violinists residing between rooms i and
j + 1, inclusive.

Say that the move was made at positions p, p + 1. This creates a 2-gap at rooms (p, p + 1). If i < p < j,
then this contradicts the fact that (i, i + 1) and (j, j + 1) are the closest two gaps of size 2, as then (p, p + 1)
would be closer to (i, i+ 1).

But if p = i, then consider the state before S, namely S0. Because in S there are no consecutively occupied
rooms between (i, i+ 1) and (j, j + 1), this means that in S0, rooms i+ 2 and i+ 3 are unoccupied. Otherwise,
after performing a move on rooms (i, i + 1), the violinist from room i + 1 would have to go to a room next to
another occupied room. However, this would imply that in S0, the 2-gaps (p, p + 1) and (j, j + 1) would not
have any consecutively occupied rooms between them, contradicting the fact that S is the first state with this
property. Similar reasoning shows that p = j fails as well.

As such, all cases are exhausted, and we have a contradiction. All gaps of size 2 must always have at least
one pair of two consecutive occupied rooms between them.

ECA 4:3 (2024) Article #S2R20 6

Tanya Khovanova and Rich Wang

This is enough to show that any final state will have at most one gap of size 2, or else by Lemma 5.1 it would
not be a final state. All final states must also have at least one gap of size 2, as making a move automatically
creates a gap of size 2 in the subsequent state. As a result, we have the following corollary.

Corollary 5.1. All final states from a clusteron of size N > 1 must have exactly one gap of size 2 and all
single occupancy rooms.

We have now shown that all shadows of the final states belong to FN . Our next goal is to show which states
are achievable.

Lemma 5.2. It is always possible to reach a flat clusteron or flat near-clusteron when starting from a clusteron
of size N > 1.

Proof. By Proposition 4.1, it is possible to continually perform moves on pairs of rooms where at least one room
acted upon in each move has more than one occupant until we reach a state in which every room has less than
or equal to 1 violinist.

We claim that while performing this set of moves, there will exist at most one gap in all propagated states
from the clusteron, which, if it exists, will have size 1.

Assume for the sake of contradiction that state S is the first propagated state to violate this claim, and it
comes after state S0.

If S0 did not have any gaps, then we have two cases. If the move we perform to get from S0 to S is performed
on two crowded rooms, then S will not have any gaps either. If the move is performed on one crowded room
and one single-occupancy room, then S will have exactly 1 gap, which will be of size 1. Both cases give a
contradiction.

On the other hand, if S0 had exactly 1 gap, which was of size 1, then we would once more have two cases.
If the move we perform to get from S0 to S is performed on two crowded rooms, then S will not have any gaps,
as the gap previously present in S0 will get filled by one of the violinists acted upon by our move. If the move
is performed on one crowded room and one single-occupancy room, then S will have exactly 1 gap, which will
be of size 1, as the gap previously present in S0 will again get filled by one of the violinists acted upon by our
move, and the single-occupancy room our move acted upon will create a new gap of size 1. Once again, both
cases give a contradiction.

Lemma 5.3. For all flat or flat near-clusterons a1a2 . . . am, it is possible to achieve all possible final shadows
in the set FN , with the exception of 11011, 1011, 1101, and 101.

Proof. For the flat clusterons or near-clusterons of size N < 5, we can write out all possible sets of moves,
namely for 1, 11, 111, 1111, 11101, and 10111.

The states 1 and 11 can easily be seen to achieve all final shadows. For the state 111, we analyze its suite
state, 3, below.

3→ 102→ 1101

3→ 201→ 1011

Similarly, for the state 11101, we analyze its suite state, 31, below.

31→ 202→ 1012→ 10201→ 11011

31→ 103→ 1102→ 11101

31→ 103→ 1201→ 2011→ 10111

The state 10111 also achieves all final shadows by symmetry. Finally, 1111 can be seen to achieve all final states
in Figure 1.

For N ≥ 5, we prove the lemma by induction. It can be verified that all final shadows are achievable for all
flat clusterons and flat near-clusterons with size N = 5.

For the base case of N = 5, we first show that all final shadows are achievable from the room-state 1001111,
which corresponds to the suite-state of 104 below.

104→ 1103→ 11201→ 12011→ 20111→ 101111

104→ 1202→ 2012→ 20201→ 101201→ 102011→ 110111

104→ 1301→ 2021→ 10121→ 10202→ 11012→ 110201→ 111011

104→ 1103→ 11102→ 111101

By symmetry, all final states are also achievable from the room-state 1111001.

ECA 4:3 (2024) Article #S2R20 7

Tanya Khovanova and Rich Wang

When starting with a flat clusteron or a flat near-clusteron of size 5, we can always find two consecutive
occupied rooms at the beginning or end of that clusteron. By making a move on these two rooms, we can reach
either the room-state 1001111 or 1111001. We can conclude that all flat and flat near-clusterons of size 5 can
also achieve any final state.

For the inductive step, we consider the operation as chip-pushing. We assume the result for N and prove it
for N + 1.

For any flat clusteron or near-clusteron of size N + 1, consider the set of violinists excluding the one on the
very left. This set of violinists is a flat clusteron or near-clusteron of size N . By our inductive assumption, we
can make moves to turn this clusteron into any shadow in FN . But because we are considering our operation
as chip-pushing, after performing the moves to create that shadow in FN , the leftmost violinist will get pushed
such that it is in the room directly to the left of the second-leftmost violinist. In particular, this means that we
can create all shadows of size N + 1 that consist of some violinist directly to the left of any shadow of size N ,
and by symmetry, any shadow that consists of some violinist directly to the right of any shadow of size N .

Placing a violinist directly to the left of shadow FN,i and performing the only possible sequence of moves
until a final state is reached will create the shadow FN+1,i, and placing a violinist directly to the right and
performing the only possible sequence of moves will create the shadow FN+1,i+1. Since i ranges from 0 to N−1,
we can see that all FN+1,i′ can be created via one of these transformations for 0 ≤ i′ ≤ N , so we are done.

Remark 5.1. The exceptions listed in Lemma 5.3 fail because there are certain final shadows they cannot reach.
The state 101 cannot reach the final shadow 1001, the state 1011 cannot reach 101001, the state 1101 cannot
reach 100101, and 11011 cannot reach 10100101.

We can now completely analyze all clusterons of size 4 and show that we can achieve all final shadows for
each.

Example 5.1. Suppose N = 4. Up to symmetries, all possible clusterons are 1111, 121, 211, 22, 21. The
clusteron 31 after one move becomes 121, and the clusteron 22 after one move becomes 1111. The 1111 case is
completely analyzed at the beginning of the paper in Example 1.1.

We are left to analyze cases 121 and 211.
Case 211 has the following possibilities:

211→ 11011→ 100111→ 1010011→ 10101001

211→ 12001→ 101101→ 110011→ 1001011→ 10011001→ 10100101

211→ 11011→ 111001→ 1100101→ 10010101.

A move can be made on the clusteron 121 to turn it into the room-state 11101, which we have shown in
Lemma 5.3 can achieve all final shadows.

Case 10111 can lead to the following possibilities:

10111→ 111001→ 1100101→ 10010101

10111→ 110011→ 1001011→ 10011001→ 10100101.

By symmetry, the final shadow 10101001 can be achieved from case 11101.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Corollary 5.1, we showed that all possible final shadows are in FN .
For N ≥ 5, the fact that every shadow is achievable is immediate after combining Lemma 5.2 and Lemma 5.3.
We are left with cases of small N . We can directly check that all shadows are achievable for N = 1, 2, 3, 4.

Being able to describe all final shadows in such a manner has some immediate consequences on the centroids
of final states.

Proposition 5.3. All distinct final states have unique centroids.

Proof. If the leftmost violinist is in room r, and the double is the k-th gap, then the centroid can be computed
to be:

r +N − k

N
.

The centroid is distinct for each pair (r, k).

Corollary 5.2. Final states are congruent up to translation if and only if the centroid has the same fractional
part.

ECA 4:3 (2024) Article #S2R20 8

Tanya Khovanova and Rich Wang

We have been able to describe all final shadows of a clusteron. We now work to extend this result to prove
a statement on all final states of a clusteron, starting with Proposition 5.4.

Proposition 5.4. In any propagated state from a flat clusteron, the furthest that a violinist can move from its
original room is bounded above by N − 1.

Proof. We use induction on the index of our violinists to show that no violinist can travel more than N−1 rooms
to its left. Consider our operation as chip-pushing, which imposes an ordering on violinists that is preserved
across moves, and say that the first violinist is in room 0. After the first move, some violinist will move into
room N . By the idea of chip-pushing, the violinist now in room N can never move to a room to the left of
room N . By Theorem 5.1, the span of the final state of any clusteron is exactly 2N , so the leftmost room that
the first violinist can eventually occupy is room −N + 1, as the first violinist can only travel to the left. This
is exactly N − 1 rooms to the left of room 0, so we have proven the desired result for the 1-st violinist.

This is our base case. For the inductive step, we assume the result for the i-th violinist and prove it for the
(i+ 1)-st violinist. Because the (i+ 1)-st violinist starts 1 room to the right of the i-th violinist, the (i+ 1)-st
violinist must also end at least one room to the right of the i-th violinist, and by the inductive assumption the
number of times the i-th violinist can move to the left is bounded above by N − 1, the same bound holds for
the number of times the (i+ 1)-st violinist can move to the right.

We can similarly prove the desired result for the rightmost room that a violinist can travel to.
To note that N − 1 is achievable for the leftmost violinist in particular, we can see that performing moves

on the sequence of rooms (N − 2, N − 1), (N − 4, N − 2), . . . , (−N + 2,−N + 3) causes the violinist starting in
room 0 to end in room −N + 1.

We start by proving a supporting lemma that describes what happens when we place a violinist next to a
shadow of a final state.

Lemma 5.4. Say that we have a state with N + 1 violinists that has a violinist in some room k, and next to it
we have a shadow FN,r with the leftmost violinist in room k+ 1 for some 1 ≤ r ≤ N − 1. Then the only possible
final state from here is FN+1,r with the leftmost violinist in room k − 1.

Proof. We perform moves on the following sequence of rooms: (k, k+1), (k+2, k+3), . . . , (k+2r−3, k+2r−2),
at which point we can no longer make any moves, and we end up with a final state with shadow FN+1,r with
the leftmost violinist in room k− 1. At each step in the process, only one move can be made, which is why this
is the only possible achievable final state.

Now we are ready to prove the main theorem.

Theorem 5.2. The final states of a flat clusteron of size N starting with the leftmost violinist in room 0 can
be expressed as one of the following:

• the shadow FN,1 with first violinist in room −N + 1

• the shadow FN,N−1 with first violinist in room −1

• the shadow FN,r for any 1 ≤ r ≤ N − 1 with first violinist in room k for all −N + 2 ≤ k ≤ −2.

Proof. The proof is similar to that of Theorem 5.1.
We first show that all claimed final states are achievable.
The edge cases, or obtaining a state with shadow FN,1 with the leftmost violinist in room −N + 1, and

obtaining a state with shadow FN,N−1 with the leftmost violinist in room −1, can be achieved by continually
performing the leftmost possible move and rightmost possible move, respectively.

To show that all other claimed states are obtainable, we proceed by induction. The base cases of N = 1, 2, 3, 4
can be manually verified. For the inductive step, say that we have proven the result for N and wish to prove it
for a flat clusteron of size N + 1. We provide a construction for general FN+1,r, with the leftmost violinist in
room k.

Let us consider our operation as chip-pushing, which imposes an ordering on our violinists that is preserved
across moves. In the case that 1 ≤ r ≤ N − 2 and −N + 1 ≤ k ≤ −3, let us consider separately the leftmost
violinist and the flat clusteron of size N to its right. By our inductive assumption, we can turn the flat clusteron
of size N into a state with shadow FN,r with the leftmost violinist in room k + 2. Performing these operations
pushes the leftmost violinist into room k+ 1, upon which by Lemma 5.4, the only possible attainable final state
has a shadow of FN+1,r and the leftmost violinist in room k.

In the case that r = 1 and k = −2, we can perform moves on the sequence of rooms (0, 1), (2, 3), . . . ,
(2N − 8, 2N − 7), (2N − 5, 2N − 4), (2N − 7, 2N − 6), . . . , (−1, 0).

Notice that if it is possible to reach a state with shadow FN+1,r with the leftmost violinist in room k, then
by performing “inverse” of each move (if a move on rooms (xi, xi + 1) was performed, then we instead perform

ECA 4:3 (2024) Article #S2R20 9

Tanya Khovanova and Rich Wang

a move on rooms (N − xi − 1, N − xi)) we can reach a state with shadow FN+1,N−r with the leftmost violinist
in room −N − 1− k.

This proves that we can achieve cases with −N + 2 ≤ k ≤ −2 and 2 ≤ r ≤ N − 1, as well as the case where
r = N − 1 and k = −N + 1.

This shows that all final states with shadow FN,r for some 1 ≤ r ≤ N − 1 and with the leftmost violinist in
room k for some −N + 2 ≤ k ≤ −2 are attainable.

To show that no other final states are achievable, notice that if we do not continually perform the leftmost
move, then the leftmost violinist must move to the left at least twice, once during the first move and a second
time because another violinist will eventually be pushed into the room to his right. As a result, the leftmost
violinist must end at the room with index −2 or below. We can similarly show that unless we continually perform
the rightmost move, the rightmost violinist must end in a room with index N + 1 or above. By Theorem 5.1,
we know that the span of any flat clusteron final state is 2N , so the first violinist must be in some room with
index between −N + 2 and −2. But Theorem 5.1 also tells us that all flat clusteron final states have shadows
in FN for N ≥ 5, which gives us the desired result.

6. Intermediate States

We call an intermediate state a locked-in state if all possible moves for the state and its future states do not
change its centroid. Thus, a locked-in state has a set final state.

We call a state spacious, if it does not contain any flat clusterons of size larger than 2 and every pair of
clusterons of size 2 has at least one 2-gap between them.

Proposition 6.1. An intermediate state is locked-in if and only if it is spacious.

Proof. First, we show that if the state is not spacious, it is not locked-in. Suppose the state contains a c-clusteron
with c > 2. Consider the move that can be performed on the two leftmost violinists inside this clusteron. The
move has unequal left and right neighborhoods, and by Lemma 3.1 the centroid changes.

Now suppose that in our state, we have two pairs of two consecutive rooms separated by m 1-gaps and no
2-gaps. If we make a move on one pair of these rooms, then in the next state, we will have two pairs of two
consecutive rooms separated by m− 1 1-gaps. If we continue making moves, then at some point, we will have
three consecutive rooms, implying our state was not locked-in.

Now we show that if a state is spacious, it is locked-in. We show it is impossible to go from a spacious to
a non-spacious state. This implies the result, as by Lemma 3.1, the centroid will not change when performing
moves on pairs of violinists that are part of clusterons of size 2.

Suppose we start with a spacious state and perform a move on a 2-clusteron C. Without loss of generality,
we look at what happens to the right of C. In the worst case, there is a 2-clusteron C1 to the right with the
2-gap g1 in between C and C1. Suppose C is immediately followed by a 2-gap. Then the move creates a new
2-gap in place of C and no new clusterons to the right of C. If C is not followed by a 2-gap, then the move
creates a new 2-clusteron to the right of C, which is surrounded by a new 2-gap in place of C and the gap g1
to the right.

Given an intermediate state, the number of possible moves depends on the number of gaps. Namely, if the
number of gaps is g, then the number of possible moves is N − g − 1.

On the first turn, we have n − 1 possible moves creating one 2-gap. On the second turn, we have n − 2
possible moves. On the third turn, we have one 2-gap and one 1-gap generating n − 3 possible moves. After
that, we always have at least one 2-gap created from the previous move and at least one other gap created from
the move before that. Therefore, we always have not more than n− 3 possible moves.

Proposition 6.2. The number of gaps can change only in the following pattern:

• If the chip-firing place is surrounded by two 2-gaps or one 2-gap and the border, the number of gaps
increases by 1.

• If the chip-firing place is surrounded by one 2-gap or the border and by one 1-gap, the number of gaps
does not change.

• If the chip-firing place is surrounded by two 1-gaps, the number of gaps decreases by 1.

The decrease in the number of gaps can only happen starting from move 3.

Proof. The only thing that requires a proof is the last sentence. We always have one 2-gap, and we also need
two 1-gaps. Each of the gaps requires a move to create.

ECA 4:3 (2024) Article #S2R20 10

Tanya Khovanova and Rich Wang

Example 6.1. Consider the 5-clusteron as a starting point. After the first move, we can have the shadow
1001111, which has one 2-gap. After the second move, we can have 10110011. Performing the rightmost move
then gives us 101101001, upon which performing the only possible move decreases the number of gaps from 3 to
2.

We now show what happens when the shadows of two final states are placed next to each other. The resulting
final shadow is uniquely determined, and the index of its 2-gap is the sum of the indices of the 2-gaps in the
two shadows we start with.

Proposition 6.3. When a shadow FN1,x ∈ FN1
is placed to the left and directly adjacent to a shadow FN2,y ∈

FN2
, their overall final state will have a shadow that can be represented by FN1+N2,x+y ∈ FN1+N2

.

Proof. Say that the leftmost room of FN1,x is at position 0, and the leftmost room of FN2,y is at 2N1.
We can see that this satisfies the conditions described in Proposition 6.1. As a result, its centroid must

always stay the same. Calculation gives that the centroid lies at

G =
1

N1 +N2
· ((0 + 2 + · · ·+ 2(x− 1) + (2x+ 1) + (2x+ 3) + · · ·+ (2N1 − 1)+

(2N1) + (2N1 + 2) + · · ·+ 2(N1 + y − 1)+

(2N1 + 2y + 1) + (2N1 + 2y + 3) + · · ·+ (2N1 + 2N2 − 1))

=
x(x− 1) + (N1 − x)(N1 + x) + y(2N1 + y − 1) + (N2 − y)(2N1 +N2 + y)

N1 +N2

= (N1 +N2)− x+ y

N1 +N2
.

This has fractional part − x+y
N1+N2

, and thus the final state will have a shadow representable by FN1+N2,x+y ∈
FN1+N2

, as desired.

7. Final State Probability

Because we can characterize all final states of flat clusterons, it is natural to ask ourselves what happens when
we perform random moves starting from a flat clusteron: at each state, we select a move to make uniformly and
independently out of all possible moves. It turns out that we have an equal probability of ending with a final
state with any shadow in FN . This is surprising.

7.1 Conjecture

We calculated probabilities for an extensive array of final states and noticed an amusing (amazing) pattern.
The pattern was computationally checked for up to 13 violinists. This pattern is our next conjecture.

Conjecture 7.1. If we start from a flat clusteron, and at each state uniformly select a move to perform from
all possible moves, then the probability of ending with a final state with final shadow FN,r equals 1

N−1 for all
1 ≤ r ≤ N − 1.

Equivalently, the probability of ending with a final state that has a centroid with a fractional value k
N (or

sumtroid with fractional value k) is 1
N−1 , where 0 ≤ k < N , with one exception at either k = 0 if N is odd or

k = N
2 if N is even.

Although we have not found a proof for this conjecture, we present some partial results.
We define P (N,K) to be the probability of ending with a final state with sumtroid equal to K, when starting

from a flat clusteron of size N , where we assume that each flat clusteron starts with sumtroid 0. When N is
even, this means that the violinists will be in rooms with indices in Z+ 1

2 , but this has negligible effects on our
problem.

For reference, we provide Table 2 with the values of P (N,K) for small N . Because of symmetry P (N,K) =
P (N,−K), we show only the non-positive half of the table.

Example 7.1. Consider a flat clusteron of size 4, as in Example 1.1. Each leaf in the tree in Figure 1 is
achieved with the same probability. As a result, in Table 1, we can see that the probability both for ending with
a sumtroid of −1 and for ending with a sumtroid of 3 is 1

6 . Both of them correspond to the same final shadow,
which is therefore achieved with probability 1

6 + 1
6 = 1

3 . A similar calculation can be performed for the other
shadows. Note that although in this specific case the probability of achieving the sumtroid of each final state is
proportional to the number of branches corresponding to that final state, this is not always the case.

ECA 4:3 (2024) Article #S2R20 11

Tanya Khovanova and Rich Wang

N\K −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
3 1

2 0
4 1

6 0 1
6

2
6

5 1
24 0 1

24
2
24

4
24

4
24 0

6 1
120 0 1

120
2

120
4

120
8

120
11
120 0 11

120
14
120

16
120

Table 2: Probability of ending with a sumtroid of K when starting from a flat clusteron of size N .

N\K −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
3 1 0
4 1 0 1 2
5 1 0 1 2 4 4 0
6 1 0 1 2 4 8 11 0 11 14 16

Table 3: Probability of ending with a sumtroid of K when starting from a flat clusteron of size N multiplied
by (N − 1)!.

We construct Table 3, where its entry in row N and column K equals the corresponding entry in Table 2
multiplied by (N − 1)!.

In the next lemma, we describe zeros in Table 3. In particular, we show that there are N − 2 of them in a
row corresponding to N violinists. Let M = N

2 for even N and 0 for odd N .

Lemma 7.1. The sumtroid K of a final state achieves all integer values in the range −
(
N−1
2

)
≤ K ≤

(
N−1
2

)
,

except for K ≡M (mod N), in which case P (N,K) = 0.

Proof. We know that the smallest sumtroid of a final state is achieved when we use the greedy algorithm of
always performing the rightmost possible move. Thus, the smallest sumtroid is −

(
N−1
2

)
. By symmetry, the

largest sumtroid is
(
N−1
2

)
.

We next show that it is impossible for there to exist a final state with sumtroid K ≡M (mod N), implying
that P (N,K) = 0 in these cases. Say that we end in a state with shadow FN,k for some 1 ≤ k ≤ N − 1 with
the leftmost violinist in room r. By Proposition 5.3, we have

K = N

(
r +N − k

N

)
= N2 +Nr − k.

When N is odd, then r ∈ Z, and so K ≡ −k (mod N). But by Theorem 5.1, we know that k can only take on
values between 1 and N − 1 inclusive, so K cannot be equivalent to 0 modulo N .

When N is even, then r ∈ Z+ 1
2 , so the term Nr leaves a remainder of N

2 when divided by N . This tells us

that K ≡ N
2 − k, from which we similarly get that K cannot be equivalent to N

2 modulo N .

We now show that P (N,K) 6= 0 when − (N−1)(N−2)
2 ≤ K ≤ (N−1)(N−2)

2 and K 6≡ M (mod N). To prove
this, we will show that there are (N2 − 3N + 3) − (N − 2) = N2 − 4N + 5 values of K that are achievable in
the given range.

We once again know that K = N2+Nr−k. Theorem 5.2 tells us that there exists exactly (N−3)(N−1)+2 =
N2 − 4N + 5 possible ending states, all of which have distinct sumtroids by Proposition 5.3. As all of these

sumtroids K lie within the range − (N−1)(N−2)
2 ≤ K ≤ (N−1)(N−2)

2 , the result is implied.

7.2 Relation of probabilities to recursive trees

Define a recursive tree on N vertices, labeled 0 through N − 1, to be a tree rooted at 0 such that all paths
starting from 0 and ending at a leaf are strictly increasing. Such trees are also called increasing Cayley trees.
Define the smallest rooted path of a recursive tree to be the path starting at 0 that always goes to the smallest
child. We claim there exists a relationship between the number of recursive trees of size N with a certain
number of leaves and the smallest rooted path ending in a certain number and the probability of ending with
a certain corresponding sumtroid value of a final state that has propagated from a flat clusteron of size N . It
turns out that proving this implies Conjecture 7.1.

Let R(N, `, x) be the number of recursive trees with N vertices, ` vertices of degree 1 (possibly including
the root itself), and with the smallest rooted path ending in x.

Conjecture 7.2. It is true that R(N, `, x) = P (N,K) · (N − 1)! when

` =

⌊
1

N

(
K +

(N − 2)(N − 1)

2

)⌋
+ 2

ECA 4:3 (2024) Article #S2R20 12

Tanya Khovanova and Rich Wang

x =

{ (
K + (N−2)(N−1)

2

)
(mod N), if K + (N−2)(N−1)

2 6≡ 0 (mod N)

1, if K + (N−2)(N−1)
2 ≡ 0 (mod N)

}

and K 6= M (mod N).

Here K + (N−2)(N−1)
2 is a minimal shift of our sumtroids so that every centroid is non-negative, as this

makes some math/groupings easier. With this shift, the smallest sumtroid is 0.
We now interpret the values of ` and x in terms of final states. The leftmost violinist moves N − ` rooms

to the left from its original state to its final state, unless the sumtroid of the final state K ≡ − (N−2)(N−1)
2

(mod N), in which case the leftmost violinist moves N − ` + 1 rooms to the left. Say that our final state is
represented by the shadow FN,r. Then x + r ≡ 2 (mod N − 1). In particular, there is a bijection between x
and r.

We can also express K as

K = − (N − 2)(N − 1)

2
+ (`− 2)N + (x− 1) + min(x− 1, 1).

Equivalently, if x > 1, we have

K = − (N − 2)(N − 1)

2
+ (`− 2)N + x,

and for x = 1, we have

K = − (N − 2)(N − 1)

2
+ (`− 2)N.

Table 4 shows recursive trees corresponding to different sumtroids for N = 5. The first row of the table shows
the sumtroids. The second row shows the values of (`, x) for each sumtroid. The third row shows the recursive
trees corresponding to each sumtroid. For example, when K = −1, we can compute that the corresponding
values for ` and x are ` = 3 and x = 1. There are 4 recursive trees with 3 vertices of degree 1 and whose
smallest rooted path ends in 1. Correspondingly, 24P (5,−1) = 4.

Note that a sumtroid uniquely defines the number of leaves and x. Keep in mind that the root itself can
count as a leaf too. So in the long chain, which is the leftmost tree corresponding to sumtroid −2, both 0 and
4 count as a leaf.

−6 −4 −3 −2 −1
(2,1) (2,2) (2,3) (2,4) (3,1)

0

1 2

3

4

0

1

2

3

4

0

1

2

3

4 0

1

3

2

4

0

1

2

3

4

0

1

4

2

3

0

1

2

4

3

0

1

3

4

2 0

1 2 3

4

0

1 2

4

3

0

1 2

3

4

0

1 2

3 4

1 2 3 4 6
(3,2) (3,3) (3,4) (4,1) (4,2)

0

1

2

3 4

0

1

2 3

4

0

1

2 4

3

0

1

2 3

4

0

1

3

2 4

0

1

3 4

2

0

1

2

3

4

0

1

2

3 4

0

1

4

2 3

0

1

2

4

3 0

1 2 3 4

0

1

2 3 4

Table 4: A table showing the relationship in Conjecture 7.2. The number of trees in each column matches the
corresponding entry in row N = 5 of Table 3.

We later have a theorem that describes the recursion that the values R(N, `, i) follow. But before this, we
prove a lemma.

Let A(N, `, x) be the number of trees having N vertices, ` leaves such that the root is not a leaf, and the
smallest rooted path ending in x. Let B(N, `, x) be the number of trees having N vertices, ` leaves such that
the root is a leaf, and the smallest rooted path ending in x.

ECA 4:3 (2024) Article #S2R20 13

Tanya Khovanova and Rich Wang

Lemma 7.2. The numbers A(N, `, x) and B(N, `, x) satisfy the following equations:

A(N, `, x) +B(N, `, x) = R(N, `, x). (1)

B(N, `, x) = A(N − 1, `− 1, x− 1) +B(N − 1, `, x− 1). (2)

A(N, `, 1) =

N−1∑
i=2

B(N, `, i). (3)

In addition, for N > 2, we have B(N, `, 1) = 0.

Proof. Eq. (1) describes the fact that A(N, `, x) and B(N, `, x) count complementary subsets of the set of all
recursive trees with given parameters.

Now we prove Eq. (2). Consider a tree with its root being a leaf. Then we can collapse the root and its
child into one vertex. Depending on the number of neighbors that the original root’s child had, the new root
will either no longer be a leaf or still be a leaf. In the first case, both the number of vertices and the number
of leaves decrease by 1. In the second case, the number of vertices decreases by 1, while the number of leaves
remains unchanged. In both cases, all labels also need to decrease by 1 (to make the tree 0-rooted).

We prove Eq. (3) by defining the corresponding bijection. Indeed, if we let C0 be the set of all children of the
root of a tree, then for every tree with its root not being a leaf and having the smallest rooted path ending in 1,
we can switch the parent of all leaves in C0 \{1} to the leaf with label 1 (while preserving all other connections)
to create a unique tree with its root a leaf and ` total leaves (as 0 is now a leaf, but 1 is no longer a leaf).

And if we let C1 be the set of all children with parent 1, for every tree with its root a leaf and ` leaves, we
can switch the parent of all leaves in C1 to the root of the tree to create a unique tree with its root a leaf, `
total leaves (as 1 is now a leaf, but 0 is no longer a leaf), and the smallest rooted path ending in 1.

The last equation follows from the fact that if the vertex labeled 1 is a leaf, the root must have other children
and cannot be a leaf, provided that the total number of vertices is more than 2.

We can get that R(2, 2, 1) = 1. We are now ready for our theorem.

Theorem 7.1. For N > 2 we have

R(N, `, x) =

N−2∑
i=max(x,2)

R(N − 1, `− 1, i) +

max(x−1,1)∑
i=1

R(N − 1, `, i). (4)

Proof. The proof is by induction. We can construct a recursive tree with N vertices, ` vertices of degree 1, and
the smallest rooted path ending in x by adding a vertex to a recursive tree with N − 1 vertices.

We consider a recursive tree with N − 1 vertices and relabel its vertices with the numbers 0, 1, . . . , x− 1, x+
1, . . . , N − 1 while keeping relative order so that we exclude vertex x.

Suppose x > 1, and our tree with N − 1 vertices has the smallest rooted path ending in i < x. Then we can
attach a vertex with label x to vertex i. In this case, the number of leaves does not change.

If i > x, we can attach a vertex with label x to the earliest ancestor of vertex i, which is less than x. If this
earliest ancestor is zero, then, given that x > 1, zero cannot be a leaf. Thus, we add one leaf without destroying
any existing leaves.

For every i, there are R(N, ` − 1, i) recursive trees of the first type and R(N, `, i) of the second type. This
gives for x > 1 the following formula, matching what we want to prove,

R(N, `, x) =

N−2∑
i=x

R(N − 1, `− 1, i) +

x−1∑
i=1

R(N − 1, `, i).

If x is 1, we have to attach x to the root. Suppose T is the tree to which we attach x after relabeling its
vertices. If the root in T is not a leaf, we add a new leaf. If the root is a leaf, then we do not change the number
of leaves. We get

R(N, `, 1) =

N−2∑
i=1

A(N − 1, `− 1, i) +

N−2∑
i=1

B(N − 1, `, i). (5)

Noting that for N > 2, B(N, `, 1) = 0, we have

R(N, `, 1) =

N−2∑
i=1

A(N − 1, `− 1, i) +

N−2∑
i=2

B(N − 1, `, i).

Using Eq. (2) we get

ECA 4:3 (2024) Article #S2R20 14

Tanya Khovanova and Rich Wang

R(N, `, 1) =

N−2∑
i=1

A(N − 1, `− 1, i) +

N−2∑
i=2

(A(N − 2, `− 1, i− 1) +B(N − 2, `, i− 1))

=

N−2∑
i=1

A(N − 1, `− 1, i) +

N−3∑
i=1

A(N − 2, `− 1, i) +

N−3∑
i=1

B(N − 2, `, i)

= A(N − 1, `− 1, 1) +

N−2∑
i=2

A(N − 1, `− 1, i) +

N−3∑
i=1

A(N − 2, `− 1, i) +A(N − 2, `, 1).

Applying Eq. (3) to the first and the last term and then use Eq. (1) to combine the first two sums

R(N, `, 1) =

N−2∑
i=2

B(N − 1, `− 1, i) +

N−2∑
i=2

A(N − 1, `− 1, i)+

N−3∑
i=1

(A(N − 2, `− 1, i) +B(N − 2, `, i)) =

N−2∑
i=2

R(N − 1, `− 1, i) +

N−3∑
i=1

(A(N − 2, `− 1, i) +B(N − 2, `, i)) .

and after applying Eq. (5) to the last summation, we get

R(N, `, 1) = R(N − 1, `, 1) +

N−2∑
i=2

R(N − 1, `, i),

as desired.
Combining the results for x > 1 and x = 1, we get

R(N, `, x) =

N−2∑
i=max(x,2)

R(N − 1, `− 1, i) +

max(x−1,1)∑
i=1

R(N − 1, `, i).

This gives us many details about the behavior of P (N,K). A corresponding recursion seems to hold for the
values in Table 3, as shown below, in which each element in the (N + 1)-st row is generated by summing N
consecutive elements from the row above it, in a fashion similar to that of a sliding window, after which zeroes
are added in accordance to Lemma 7.1.

Conjecture 7.3. The recurrence in Eq. (4) can be described by the following recurrence relation for K 6≡ M
(mod N):

P (N,K) =

K+N−1
2 −A−1∑

i=K−N−1
2 −A

P (N − 1, i)

where A =
⌊

1
N (K +M)

⌋
− 1+(−1)N

4 .

See Figure 3 for an example of how one can use the values in row N = 4 of the table to generate values in
row N = 5 and for an example of how one can use the values in row N = 5 of the table to generate values in
row N = 6. An example of how an entry is generated is marked in a different color and underlined in both
cases.

Summing from K − N−1
2 to K + N+1

2 − 1 in Conjecture 7.3 represents us adding N − 1 values from the
(N − 1)-st row to obtain a value in the N -th row of the table, while the value of A that is subtracted from both
the top and bottom of the summation fixes the indexing, as it corresponds to inserting zeroes.

And if we define

T (N, `) =

N−1∑
i=0

R(N, `, i), (6)

then T (N, `) is the number of recursive trees with N vertices and ` leaves. It is known that T (N − 1, ` − 2)
equals twice the sequence of 2-Eulerian numbers, which is sequence A120434 in the OEIS [9]. The 2-Eulerian
numbers themselves are sequence A144696. Importantly, there exists an explicit formula for T (N, `), see [4],

T (N, `) =

`−2∑
j=0

(−1)j · (`− 1− j) ·
(
N

j

)
· (`− j)N .

ECA 4:3 (2024) Article #S2R20 15

Tanya Khovanova and Rich Wang

1 0 1 2 1 0 1

1 1 2 4 4 4 4 2 1 1

1 0 1 2 4 4 0 4 4 2 1 0 1

1 0 1 2 4 4 0 4 4 2 1 0 1

1 1 2 4 8 11 11 14 16 14 11 11 8 4 2 1 1

1 0 1 2 4 8 11 0 11 14 16 14 11 0 11 8 4 2 1 0 1

0+1+2+1=4

Insert zeroes

1+2+4+4+0=11

Insert zeroes

Figure 3: The recursion used to generate the rows of Table 3.

In terms of violinists, T (N, `) represents (N − 1)! times the sum of the probabilities of achieving the final
states whose corresponding recursive trees have ` leaves.

We can also express the sum T (N, `) in terms of centroids:

T (N, `) =

N−1∑
i=−(N−1)

(N − 1− |i|) · P
(
N − 1,− (N − 2)(N − 3)

2
+ (N − 1)(N − 1− `) + i

)
.

Example 7.2. Suppose that N = 5, and we wish to compute T (N, `) over all possible values of `. Then the
` = 4 case corresponds to sumtroids −6, −4, −3, and −2, the ` = 3 case corresponds to sumtroids −1, 1, 2,
and 3, and the ` = 2 case corresponds to sumtroids 4 and 6. The summation gives values of 8, 14, and 2,
respectively.

To show how our three conjectures are connected, we need the following lemma.

Lemma 7.3. The number of recursive trees with N > 1 vertices and the smallest rooted path ending in x is
(N − 2)! for any x between 1 and N − 1, inclusive.

Proof. For N = 2, there is one recursive tree: a path connecting two vertices labeled 0 and 1. The smallest
rooted path of this tree ends in 1. Thus, the statement holds.

We proceed with induction. We claim that if there is an equal probability, namely 1
N−1 , of some randomly

and uniformly selected recursive tree of size N to have its smallest rooted path end in x for each of 1 ≤ x ≤ N−1,
then we can say the same for a recursive tree of size N + 1. This finishes the proof, as the number of recursive
trees of size N and with smallest rooted path ending in x would be 1

N−1 (N − 1)! = (N − 2)!.
Choosing a random recursive tree of size N + 1 is the same as choosing a random recursive tree of size N

with the smallest rooted path ending in x and attaching the vertex with label N randomly and uniformly to
one of the other N vertices. Because N has a label larger than all other vertices, the probability that N does
not attach to vertex x and does not change the value at the end of the smallest rooted path is N−1

N , whereas
the probability that it does attach to vertex x and become the new value at the end of the smallest rooted path
is 1

N . And by our inductive assumption, the probability that the value at the end of the smallest rooted path

is less than N is also equal to 1
N−1 ·

N−1
N = 1

N for each distinct positive integer less than N .

Theorem 7.2. Conjectures 7.1 and 7.3 follow from Conjecture 7.2.

Proof. Assuming that Conjecture 7.2 is true, we have that

∑
i≡r (mod N)

P (N, i) =
1

(N − 1)!

N−1∑
j=2

R(N, j, x),

where x is defined as in Conjecture 7.2. But by Lemma 7.3, the summation on the right-hand side of this
equation equals (N − 2)!, which gives that the expression on the right-hand side equals 1

(N−1)! (N − 2)! = 1
N−1 .

Conjecture 7.3 follows immediately from Theorem 7.1 and applying the bijection from Conjecture 7.2.

Interestingly, 2-Eulerian numbers appear in many other places, especially in permutations. We discuss some
of these appearances in the next section.

ECA 4:3 (2024) Article #S2R20 16

Tanya Khovanova and Rich Wang

8. Permutations

Recursive trees are a well-studied topic, having been explored in literature such as [11] and [12]. We further
investigate the connection of the properties of recursive trees and permutations to the probabilities present in
our chip-firing variant described in Section 7.

8.1 Preliminary definitions

We start with some definitions that are used throughout this section.
Given a permutation σ of n elements, an ascent is any position i < n, where the following value is bigger

than the current one. That is, if σ = σ1σ2 . . . σn, then i is an ascent if σi < σi+1

Similarly, a descent is a position i < n with σi > σi+1. A big descent is a position i < n with σi − σi+1 ≥ 2.

8.2 Bijection between recursive trees and permutations

In this subsection, we describe the bijection between recursive trees and permutations.
Given a recursive tree, start with the root, which has label zero. Find the root’s largest child and write

down the number it is labeled with. Consider the subtree starting with the largest child and repeat recursively.
After finishing iterating over all points in the subtree, go to the next largest child.

Lemma 8.1. The map described above is a bijection.

Proof. Denote the end of the smallest rooted path of a recursive tree by x. We show that x has to be the last
digit of the corresponding permutation. Assume the contrary, that x is not the last digit and is followed by y.
If x < y, then by the way the smallest rooted path is defined, y is a child of x, which contradicts x being a
leaf. If x > y, then y is not part of the subtree starting at x. If y is the ancestor of x, then it has to be written
down before x, by our construction. Suppose y is not an ancestor of x. Then there exists an earliest common
ancestor, p, of x and y. By our construction, p’s child on the same branch as x is greater than p’s child on the
same branch as y. Thus, x cannot be on the smallest rooted path. Thus, the last digit must be x.

Now we can explain how to recover the tree from a permutation: First write the root node, 0, and make the
first digit of the permutation its child. If the next digit is greater than the previous digit, create a corresponding
node labeled with that digit and attach it to the previous node. Suppose there is a descent ab in our permutation,
where a > b. Then attach b, as a child, to the previous closest ancestor of a that is less than b.

We now explain why this is a bijection. Each tree we get is unique because we can reconstruct the permutation
by reversing the algorithm. Take the label at the end of the smallest rooted path and put it at the end of the
permutation. Remove the corresponding vertex and repeat, such that the i-th node to be removed corresponds
to the (N − i)-th digit in the permutation.

We need an extra definition. We call index i, a special descent of a given permutation, if i > 0 and is a
descent in the permutation, or if i = 0, and the permutation starts with 1.

Theorem 8.1. The number of permutations of order n with d special descents and the last digit x equals
R(n+ 1, d+ 1, x) — the number of recursive trees with n+ 1 vertices, d+ 1 leaves, and the smallest rooted path
ending in x.

Proof. Following our bijection, we see that each descent corresponds to an extra leaf, as we create an extra
branch. The number of leaves is the number of descents plus 1. In addition, we have one extra leaf if the
permutation starts with 1, as the root forms a leaf in this case.

As we saw in the proof of Lemma 8.1, the end of the smallest rooted path of a tree corresponds to the last
digit in the corresponding permutation.

Table 5 shows the permutations that correspond to the given sumtroids for N = 5, using the algorithm
described above. Each ordered pair (d, x) in the second row means the permutation has d special descents and
ends with number x.

−6 −4 −3 −2 −1 1 2 3 4 6
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2)
2341 3412 4123 1234 3421 4312 4213 3214 4321 1432

2413 2314 3241 4132 2143 1324
3124 4231 3142 1423
2134 2431 1342 1243

Table 5: A corresponding table to Table 4, but with permutations and descents.

ECA 4:3 (2024) Article #S2R20 17

Tanya Khovanova and Rich Wang

Conjecture 7.1 in terms of permutations is especially simple. It states that the number of permutations
ending in i is the same for any i.

8.3 The bijection changing the sumtroid sign

We have a natural bijection on the initial state of violinists. If we assume the centroid of the initial state to
be zero, then for a given set of moves performed on violinists in which the i-th move is made on violinists in
positions ai and ai + 1, we can instead perform moves on violinists in positions −ai and −ai− 1. Thus, we also
have a bijection on the final states— changing the sign of the sumtroid will not change the probability that we
end up in a final state with that sumtroid.

Now consider the following bijection on permutations: swap 1 and 2, and for i > 2, swap i and n + 3 − i.
Let us denote this bijection by B′. In Theorem 8.2, we prove that B′ matches permutations with oppositely
signed sumtroids, like those in Table 5. We start with some lemmas.

Lemma 8.2. The number of permutations of order n with d special descents that end in 1 is the same as the
number of permutations of order n with n− d special descents that end in 2.

Proof. Consider a permutation with d special descents that ends with 1. In this case, the number of special
descents is the same as the number of descents.

Consider two consecutive values in the permutation, neither of which is 1 or 2. Then the bijection swaps
ascents and descents in such places. Now we consider cases.

Case 1. Suppose the permutation does not start with 2, and 2 is not next to 1. That means there are two
descents ending in 1 or 2 and d − 2 descents not involving 1 or 2. The bijection will keep the descents ending
in 1 or 2 and the ascent starting with 2. The other n− 4 consecutive pairs in the permutation will be swapped
between ascents and descents. In such places, we get n − 4 − (d − 2) descents after the bijection. The total
number of descents after the bijection is n− d.

Case 2. Suppose the permutation ends with 21. That means there is a descent ending in 2, a descent ending
in 1, and d− 2 descents not involving 1 or 2. The bijection will keep the descent ending in 2 and turn a descent
ending in 1 into an ascent. The other n − 3 consecutive pairs in the permutation will be swapped between
ascents and descents, creating n−3− (d−2) descents. The total number of descents after the bijection is n−d.

Case 3. Suppose the permutation starts with 2. That means there is a descent ending in 1, and d − 1
descents not involving 1 or 2. The bijection will keep the descent ending in 1 and create a new special descent
at the beginning of the permutation. The other n − 3 consecutive pairs in the permutation will be swapped
between ascents and descents, creating n−3− (d−1) descents. The total number of descents after the bijection
is n− d.

We now present a second lemma needed to prove Theorem 8.2.

Lemma 8.3. The number of permutations of order n with d special descents that end in i > 2 is the same as
the number of permutations of order n with n− 1− d special descents that end in n+ 3− i.

Proof. Consider two consecutive values in the permutation that do not end or start in 1 or 2. Then the bijection
swaps ascents and descents in such places. Now we consider cases.

Case 1. Numbers 1 and 2 are neither neighbors in the permutation nor at the start of the permutation. This
means there are two descents ending in 1 or 2 and d−2 descents not involving 1 or 2. The bijection will keep the
descents ending in 1 or 2 and the ascents starting with 1 or 2. The n−5 consecutive pairs not involving 1 or 2 in
the permutation will be swapped between ascents and descents. In such places, we get n−5−(d−2) = n−3−d
descents after the bijection. The total number of descents after the bijection is n− 1− d.

Case 2. Numbers 1 and 2 are neighbors in the permutation, but neither number is at the start of the
permutation. There are two pairs of consecutive numbers in the permutation that include exactly one of the
numbers 1 and 2. The earlier pair is a descent and stays a descent after the bijection. The other pair is an
ascent and stays an ascent after the bijection. The other n− 3 pairs of numbers that contain d− 1 descents will
swap between ascents and descents. That means that, for such pairs, we will have n− 3− (d− 1) = n− 2− d
new descents. The total number of descents after the bijection is n− 1− d.

Case 3. Numbers 1 and 2 are not neighbors in the permutation and 1 is at the start of the permutation.
That means there is a descent ending in 2, two ascents starting with 1 or 2, a special descent ending in 1, and
d − 2 descents not involving 1 or 2. The bijection will keep the descent ending in 2. The n − 4 consecutive
pairs not involving 1 or 2 in the permutation will be swapped between ascents and descents. In such places we
get n− 4− (d− 2) = n− 2− d descents after the bijection. The total number of descents after the bijection is
n− 1− d.

Case 4. Numbers 1 and 2 are not neighbors in the permutation, and 2 is at the start of the permutation.
This means there is a descent ending in 1, two ascents starting with 1 or 2, and d− 1 descents not involving 1
or 2. The bijection will keep the descent ending in 1 and create a special descent at the very beginning. The

ECA 4:3 (2024) Article #S2R20 18

Tanya Khovanova and Rich Wang

n− 4 consecutive pairs not involving 1 or 2 in the permutation will be swapped between ascents and descents.
In such places, we get n − 4 − (d − 1) = n − 3 − d descents after the bijection. The total number of descents
after the bijection is n− 1− d.

Example 8.1. The smallest sumtroid corresponds to a recursive tree with 2 leaves and the smallest rooted
path ending in 1. The corresponding permutation has to have 1 special descent and end in 1. Thus, it is
234 . . . (N − 1)1. The largest sumtroid corresponds to a recursive tree with N − 1 leaves and the smallest rooted
path ending in 2. The corresponding permutation has to have N − 2 special descents and end in 2. Thus, it is
1(N − 1) . . . 32. We that these permutations correspond to each other under bijection B′. Similarly, the second
smallest sumtroid corresponds to a permutation with 1 special descent and ending in 2, which is 345 . . . (N−1)12,
and the second largest sumtroid corresponds to a permutation with N − 2 special descents ending in 1, which is
(N − 1) . . . 321. We see how the bijection works on these permutations. This can be seen to be true in Table 5.

We are ready for the following theorem describing the bijection B′ in terms of the numbers R(N, `, i).

Theorem 8.2. We have
R(N, `, 1) = R(N,N + 1− `, 2)

and for i > 2
R(N, `, i) = R(N,N − `,N + 2− i).

Proof. By Theorem 8.1, the number of permutations of order n with d special descents ending in i is the same
as the number of recursive trees with n + 1 vertices, d + 1 leaves, and the smallest rooted path ending in i,
which by definition is R(n+ 1, d+ 1, i).

By Lemma 8.2 we get R(n+ 1, d+ 1, 1) = R(n+ 1, n− d+ 1, 2). By assigning n+ 1 as N and d+ 1 as `, we
get

R(N, `, 1) = R(N,N + 1− `, 2).

By Lemma 8.3, for i > 2, we get R(n+ 1, d+ 1, i) = R(n+ 1, n− d, n+ 3− i). By assigning n+ 1 as N and
d+ 1 as `, we get

R(N, `, i) = R(N,N − `,N + 2− i).

8.4 Eulerian numbers

Our numbers are related to 2-Eulerian numbers as seen in Eq. (6). Here, we describe the connection of our
numbers R(N, `, i) to 1-Eulerian numbers, usually called Eulerian numbers.

We can write an independent recursion for R(N, `, 1).

Proposition 8.1. The values R(N, `, 1) follow the recursion

R(N, `, 1) = (N + 1− `)R(N − 1, `, 1) + (`− 2)R(N − 1, `− 1, 1).

Proof. We start with a tree with N vertices with the smallest rooted path ending in 1. Consider what happens
when we attach a new vertex labeled N to the tree. For our new tree to still have the smallest rooted path
ending in 1, we can attach N to any vertex, except for the vertex labeled 1. If we attach it to a leaf, we do not
create more leaves. If we attach it to a non-leaf, we create an extra leaf. Thus,

R(N, `, 1) = (N + 1− `)R(N − 1, `, 1) + (`− 2)R(N − 1, `− 1, 1).

This tells us that numbers R(N, `, 1) follow the same recursion as Eulerian numbers [11]. Comparing the
initial values we get R(N, `, 1) = A(N, `) for N > 2. See also sequence A008292 in OEIS [9].

Consider the following corresponding example in terms of permutations.

Example 8.2. Consider the number of permutations of size n with d special descents and ending in 1. Such a
permutation for n > 1 cannot start with 1. Thus, the number of such permutations is the number of permutations
ending in 1 with d descents. If we remove the last number in the permutation and lower all other numbers by
1, we get a permutation of order n − 1 with d − 1 descents. It is well known [11] that the number of such
permutations is an Eulerian number A(n− 1, d).

ECA 4:3 (2024) Article #S2R20 19

Tanya Khovanova and Rich Wang

8.5 Permutations starting with 2

Interestingly, 2-Eulerian numbers appear in permutations in many ways, see a comment to A120434 in OEIS [9].
We discuss one of the ways in this subsection.

It is known that T (n, k) gives the number of permutations of size n + 1 starting with 2 and having k + 1
descents [4]. We can expend this to our numbers.

Theorem 8.3. The numbers R(N, `, i) can be described as the number of permutations of order N starting
with 2, with ` − 1 descents ending in i + 1, if i > 1. Numbers R(N, `, 1) can be described as the number of
permutations of order N starting with 2, with `− 1 descents ending in 1.

Proof. By Theorem 8.1, the number of permutations of order n with d special descents ending in i is the same
as the number of recursive trees with n + 1 vertices, d + 1 leaves, and the smallest rooted path ending in i,
which by definition is R(n+ 1, d+ 1, i).

Consider a permutation of order n+1 starting with 2 and having d descents. Suppose we remove the starting
number and lower all other numbers in the permutation that are greater than 2 by 1. We get a permutation of
order n.

Now we see what happens with descents. Ignoring the first two numbers in our permutations, ascents and
descents stay in place. In addition, if the second number of the original permutation was 1, we lose a descent.
Thus, the number of descents in the original permutation equals the number of special descents in the new one.

This tells us that the number of permutations of order n+ 1 starting with 2, having d descents and ending
with i > 2 is the same as the number of permutations of order n with d special descents and ending in i − 1.
Thus, this number is R(n+ 1, d+ 1, i− 1).

Similarly, the number of permutations of order n+ 1 starting with 2, having d descents, and ending with 1
is the same as that of order n with d special descents and ending in 1. Thus, this number is R(n+ 1, d+ 1, 1).
The theorem follows.

9. Additional Data

In this section, we present additional data that we calculated.

9.1 States with five violinists

Figure 4 shows the left half of the tree diagram for possible moves for 5 violinists. The vertex labels are
sumtroids.

0

3

5

6

6

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

0

1

1

1

1

−1

−1

1

1

2

2

2

2

2

2

2

0

1

1

1

−1

−1

−1

2

2

2

2

2

2

2

2

2

2

2

2

0

0

1

1

1

−1

−1

−1

0

1

1

1

1

−1

−1

Figure 4: Tree diagram for possible moves for 5 violinists.

Figure 5 shows the same diagram with the states that are children of locked-in states removed.

ECA 4:3 (2024) Article #S2R20 20

Tanya Khovanova and Rich Wang

0

3

5

6 4

3 1

2 0

1 −1

1

1

2 0

1 −1

2 0

0

1 −1

0

1 −1

Figure 5: Left half of the tree for flat clusteron of size 5 minus duplicates.

9.2 Probabilities for 6 to 9 violinists

We also add the probability of ending with each centroid for N = 6, N = 7, N = 8, and N = 9 below. The
probabilities are multiplied by (N − 1)! to turn them into integers. The numbers do not fit into a table, so we
present them as a sequence.

For N = 6 we have the following sequence corresponding to sumtroids from −10 to 0:

1, 0, 1, 2, 4, 8, 11, 0, 11, 14, 16.

For N = 7 we have the following sequence corresponding to sumtroids from −15 to 0:

1, 0, 1, 2, 4, 8, 16, 26, 0, 26, 36, 48, 60, 66, 66, 0.

For N = 8 we have the following sequence corresponding to sumtroids from −21 to 0:

1, 0, 1, 2, 4 8, 16, 32, 57, 0, 57, 82, 116, 160, 212, 262, 302, 0, 302, 342, 372, 384.

For N = 9 we have the following sequence corresponding to sumtroids from −28 to 0:

1, 0, 1, 2, 4, 8, 16, 32, 64, 120, 0, 120, 176, 256, 368, 520, 716, 946,

1191, 0, 1191, 1436, 1696, 1952, 2176, 2336, 2416, 2416, 0.

Acknowledgments

We are grateful to Darij Grinberg for suggesting this project and for helpful consultations. We thank Ira Gessel
and Richard Stanley for answering our questions. We thank MIT PRIMES-USA for giving us the opportunity
to conduct this research.

References

[1] R. Anderson, L. Lovász, P. Shor, J. Spencer, É. Tardos, and S. Winograd, Disks, balls, and walls: analysis
of a combinatorial game, Amer. Math. Monthly 96.6 (1989), 481–493.

[2] P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A (3) 38.1 (1988), 364–374.

[3] A. Björner, L. Lovász, and P. W. Shor, it Chip-firing games on graphs, European J. Combin. 12.4 (1991),
283–291.

[4] M. A. Conger, A refinement of the Eulerian numbers, and the joint distribution of π(1) and Des(π) in Sn,
Ars Combin. 95 (2010), 445–472.

[5] D. Grinberg, Math 235: Mathematical Problem Solving, unpublished manuscript, available at https://

www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf, 2021.

[6] D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64.14 (1990), 1613–
1616.

[7] S. Hopkins, T. McConville, and J. Propp, Sorting via chip-firing, Electron. J. Comb. 24:3 (2017), #P3.13.

[8] M. H. A. Newman, On theories with a combinatorial definition of “equivalence”, Ann. Math. 43 (1942),
223–243.

ECA 4:3 (2024) Article #S2R20 21

Tanya Khovanova and Rich Wang

[9] OEIS Foundation Inc, The On-Line Encyclopedia of Integer Sequences, Published electronically at https:
//oeis.org., 2023.

[10] J. Spencer, Balancing vectors in the max norm, Combinatorica 6.1 (1986), 55–65.

[11] R. P. Stanley, Enumerative Combinatorics. Cambridge studies in Advanced Mathematics 1, 2011.

[12] F. Bergeron, P. Flajolet, and B. Salvy, Varieties of increasing trees, In CAAP’92: 17th Colloquium on
Trees in Algebra and Programming Rennes, France, February 26–28, 1992 Proceedings 17, pages 24–48,
Springer, 1992.

ECA 4:3 (2024) Article #S2R20 22

