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Introduction

A classical result of lattice path enumeration arising from tossing n fair coins is the Chung-Feller theorem [1]. It
states that the Catalan number Cn counts not only the lattice paths consisting of unit northeast and southeast
steps from (0, 0) to (2n, 0) that stay above the horizontal axis, but we can also prescribe the number r of
northeast steps above the horizontal axis. For each r ∈ {0, 1, . . . , n} we have the same Catalan number of lattice
paths. Generalizations of this result are due to Spitzer [10, Theorem 2.1] as well as Huq in his dissertation [6,
Theorem 2.1.1]. All these results may be shown using the following simple visual idea: if we slightly “tilt” the
diagram of a lattice path (see Figure 2), all steps occur at different heights, and the relative order of these heights
may be rotated cyclically by changing the designation of the first step in the lattice path. This simple idea was
perhaps first used by Raney [9, Theorem 2.1], who observed that there is exactly one rotational equivalent of
a sequence of n + 1 positive units and n negative units in which the partial sums are all positive. A question
naturally arises: which permutations are relative orders of steps in such tilted pictures of lattice paths?

In this paper we partially answer this general question in two specific settings. Both are related to k-Catalan
paths, defined as lattice paths consisting of unit up steps (1, 1) and down steps (1,−k+1) which start and end on
the horizontal axis but never go below it. The study of the relative order of all steps leads us to a generalization
of some results of Flajolet from continued fractions to continuants. The study of the relative orders of the up
steps leads us to the discovery of a restricted variant of the Foata–Strehl group action [3, 4].

Our paper is structured as follows. In the Preliminaries we review the Chung-Feller theorem [1], its general-
izations by Spitzer [10, Theorem 2.1] and Huq [6, Theorem 2.1.1], and we point out a few connections between
the two generalizations. In Section 2 we outline a visual proof of Huq’s results which inspires the definition of
the permutations we intend to study. We introduce Catalan–Spitzer permutations (and their k-generalizations)
in Section 3 as the relative orders of all steps in a Catalan path. Equivalently, these are obtained by labeling
the steps in reverse lexicographic order and listing them in the order they occur along the path. Due to this
labeling, a refined count of Catalan–Spitzer permutations amounts to enumerating all Catalan paths that have
a given number of steps at a certain level. For the Catalan paths our formulas may be obtained using Flajolet’s
result [2, Theorem 1] which provides a generalized continued fraction formula. We generalize these formulas
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to k-Catalan paths by using continuants instead of continued fractions. In Section 4 we observe that the rel-
ative order of the up steps alone uniquely determines the Catalan paths. The resulting short Catalan–Spitzer
permutations may be characterized in terms of the associated Foata–Strehl trees, first studied by Foata and
Strehl [3, 4] who introduced a group action on the set of all permutations using these ordered 0 − 1 − 2 trees.
Finally, in Section 5 we study a restricted variant of the Foata–Strehl group action which takes each short
Catalan–Spitzer permutation into another short Catalan–Spitzer permutation. The number of orbits on the
set of Cn permutations is the Catalan number Cn−1. This is a consequence of a generating function formula
that is applicable to any class of permutations that is closed under the restricted Foata–Strehl group action. In
particular, for the set of all permutations the number of orbits is the same as the number of indecomposable
permutations.

Our results inspire revisiting three classical topics: generalizations of the Chung–Feller theorem, Flajolet’s
continued fraction approach to lattice path enumeration, and the Foata–Strehl group actions. They are likely
the first to connect these three areas.

1. Preliminaries

This paper focuses on permutations that are associated with the Chung and Feller theorem [1] and some of its
generalizations.

Theorem 1.1 (Chung–Feller). Among the lattice paths from (0, 0) to (2n, 0) consisting of n up steps (1, 1) and
n down steps (1,−1), the number of paths having 2r steps above the x axis is the Catalan number Cn = 1

n+1

(
2n
n

)
,

independently of r, for each r ∈ {0, 1, . . . , n}.

In the special case when r = n the Chung–Feller theorem implies that the number of Dyck paths, that is,
lattice paths of the above type that never go below the x axis from (0, 0) to (2n, 0) is the Catalan number Cn.
This well-known special case has been generalized to k-Dyck paths (whose definition may be found in Lemma 1.1
below) by Raney; see [5, p. 361].

Lemma 1.1 (Raney). The number of lattice paths from (0, 0) to (kn, 0) consisting of (k − 1)n up steps (1, 1)
and n down steps (1, 1− k) that never go below the x-axis is the Fuss–Catalan number

Cn,k =
1

kn+ 1

(
kn+ 1

n

)
=

1

(k − 1)n+ 1

(
kn

n

)
. (1)

Huq has generalized Theorem 1.1 to the lattice paths appearing in Lemma 1.1 by proving the following
result [6, Theorem 2.1.1].

Theorem 1.2 (Huq). Let (y1, . . . , ym) be any sequence of integers whose sum is 1. Then for each r ∈
{0, 1, . . . ,m− 1} exactly one of the cyclic shifts

(yσ(1), yσ(2), . . . , yσ(m)) ∈ {(y1, y2, . . . , ym), (y2, . . . , ym, y1), . . . , (ym, y1, . . . , ym−1)}

has the property that exactly r of the partial sums yσ(1) + yσ(2) + · · ·+ yσ(k) for 1 ≤ k ≤ m are positive.

Huq’s proof of Theorem 1.2 is a consequence of the following theorem of Spitzer [10, Theorem 2.1].

Theorem 1.3 (Spitzer). Let (x1, x2, . . . , xm) ∈ Rm be any vector with real coordinates such that

x1 + x2 + · · ·+ xm = 0

but no shorter cyclic partial sum xi+1+xi+2+· · ·+xj of the coordinates vanishes. Then for each r ∈ {0, 1, . . . ,m−
1} exactly one of the cyclic shifts

(xσ(1), xσ(2), . . . , xσ(m)) ∈ {(x1, x2, . . . , xm), (x2, . . . , xm, x1), . . . , (xm, x1, . . . , xm−1)}

has the property that exactly r of the partial sums xσ(1) + xσ(2) + · · ·+ xσ(k) for 1 ≤ k ≤ m are positive.

Indeed, introducing xi = yi−1/m for i = 1, 2, . . . ,m, the resulting vector (x1, x2, . . . , xm) ∈ Rm satisfies the
conditions of Theorem 1.3 as the sum x1 +x2 + · · ·+xm is zero but no shorter partial sum xi+1 +xi+2 + · · ·+xj
of the coordinates, read cyclically, is an integer. Furthermore, any shorter sum xi+1 + · · · + xj is positive if
and only if yi+1 + · · ·+ yj − 1 ≥ 0 holds, since yi+1 + · · ·+ yj is an integer and we have yi+1 + · · ·+ yj − 1 <
xi+1 + · · ·+ xj < yi+1 + · · ·+ yj .
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Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy

(0, 0)

(1, 3)

(2, 1)

(3, 2)

(4,−1)

(5, 1)

(6, 2)

(7, 1)

Figure 1: The lattice path associated with the vector y = (3,−2, 1,−3, 2, 1,−1).

Proof of Theorem 1.3. Introducing

zi = x1 + x2 + · · ·+ xi, (2)

all cyclically consecutive sums may be expressed as xi+1 + xi+2 + · · ·+ xj = zj − zi. This is clear when i ≤ j,
and it is easy to prove when i > j using zm = 0. Putting the numbers z1, z2, . . . , zm in increasing order, for
each 0 ≤ r ≤ m− 1 there is exactly one zi, the (r + 1)st largest number, for which exactly r of the differences
zj − zi are positive.

As observed by Huq [6, Corollary 5.1.2], Theorem 1.2 has the following consequence.

Corollary 1.1 (Huq). The number of lattice paths from (0, 0) to (kn, 0) consisting of (k − 1)n up steps (1, 1)
and n down steps (1, 1−k) with exactly r up steps below the x-axis is independent of r for r ∈ {0, 1, . . . , (k−1)n}
and is given by the Fuss–Catalan number Cn,k.

Remark 1.1. The special instance of Spitzer’s theorem when j = m − 1 is often called Spitzer’s lemma;
see [7, Lemma 10.4.3]. The special instance of Corollary 1.1 when j = m − 1 is also a special case of Raney’s
theorem [9, Theorem 2.1]; see [5, p. 359].

As noted, Theorem 1.2 above is a consequence of Spitzer’s theorem 1.3, but the converse is also true.

Proposition 1.1. Spitzer’s theorem 1.3 is a consequence of Huq’s theorem 1.2.

Proof. Assume that the sum of all coordinates (x1, . . . , xm) ∈ Rm is zero, and each of the shorter cyclically
consecutive sums of terms xi+1 + · · · + xj is nonzero and has sign εi,j . We may assume that there is a fixed
positive integer k > 0 such that all numbers xi are rational of the special form

xi =
m · yi − 1

m · k
for some yi ∈ Z. (3)

Indeed, we may perturb the coordinates of (x1, . . . , xm) as long as they satisfy all m(m− 1)− 2 inequalities of
the form

εi,j · (xi+1 + · · ·+ xj) > 0, (4)

together with the equation
x1 + · · ·+ xm = 0 (5)

in Rm. The inequalities (3) define an open subset of the hyperplane defined by (5). This subset is not empty
as it contains the vector we began with. Points whose coordinates are of the form given in (3) form a dense
subset in the hyperplane defined by (5), hence we may replace (x1, . . . , xm) with a vector whose coordinates are
of the form given in (3) and that satisfy the same inequalities. Similar to the other implication, Theorem 1.3
now follows from Theorem 1.2 after observing that each shorter sum xi+1 + · · · + xj satisfies the inequality
yi+1 + · · ·+ yj − 1 ≤ k · (xi+1 + · · ·+ xj) < yi+1 + · · ·+ yj .

2. A lattice path visualization of Huq’s result

In the spirit of Krattenthaler [7, Remark 10.4.4] and also of Graham, Knuth and Patashnik [5, p. 360], we may
visualize a self contained proof of Theorem 1.2, using lattice paths, as follows. This visualization makes the
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result and its proof a generalization of Raney’s lemma 1.1 and its geometric proof given in [5, p. 359–360]. If we
generalize the notion of lattice paths to connect vertices with non-integer second coordinates, our visualization
also includes the proof of Theorem 1.3.

Let us extend the vector y to an infinite vector (. . . , y−1, y0, y1, y2, . . .) by setting yi = yj for i ≡ j mod m,
and consider the associated infinite lattice path with steps . . . , (1, y−1), (1, y0), (1, y1), (1, y2), . . ., containing the
lattice point (0, v0) = (0, 0) and satisfying (i + 1, vi+1) = (i, vi) + (1, yi+1) for all integers i; see Figure 2. The

(0, 0)

(1, 3)

(2, 1)

(3, 2)

(4,−1)

(5, 1)

(6, 2)

(7, 1)

Figure 2: The infinite lattice path associated to the lattice path in Figure 1. The dotted lines are the lines
where the functional F (u, v) = v − 1/m · u is constant. The functional F yields the linear order (4,−1), (0, 0),
(5, 1), (2, 1), (6, 2), (3, 2) and (1, 3) on the points on the path.

finite path pi occurs in the infinite path as a subpath starting at (i, vi) and ending at (i+m, vi+1). Introducing
xi = yi − 1/m and ordering the zis defined in (2) amounts to the following. Consider the linear functional
F (u, v) = v−1/m ·u defined on the plane, and consider its level curves which are lines with slope 1/m. For any
i ∈ {1, 2, . . . ,m} we have zi = F (i, vi) and we may extend this observation to all i ∈ Z keeping in mind that
zm = 0. Thus we may set zi = zj if i ≡ j mod m. Ordering z1, z2, . . . , zm = z0 in increasing order amounts to
ordering the m lattice points (0, v0) through (m− 1, vm−1) according to the linear functional F . If (i, vi) is the
(r + 1)st largest lattice point in this order, then there are exactly r lattice points (i, vi) above this level.

3. Catalan–Spitzer permutations

In this section we investigate the restriction of Theorem 1.2 and its proof to k-Catalan paths. In particular,
we describe the permutations of partial sums that appear in the proof of Theorem 1.2, when we prove it by
reducing it to Spitzer’s theorem 1.3.

We define an augmented k-Catalan path of order n as a lattice path consisting of (k− 1)n+ 1 up steps (1, 1)
and n down steps (1,−k + 1) that begins with an up step and never goes below the line y = 1 after the initial
up step. The sum of the second coordinates of these steps is 1, hence Theorem 1.2 is applicable. In this special
case the proof of this theorem calls for replacing each step (1, y) by (1, y− 1/(kn+ 1)). Hence up steps become
(1, kn/(kn + 1)) and down steps become (1,−k((k − 1)n + 1)/(kn + 1)) and the transformed path goes from
(0, 0) to (kn+ 1, 0). Between its endpoints it remains strictly above the line y = 0. The transformed path is not
a lattice path, but we can easily transform it into one by multiplying all y-coordinates by the factor (kn+ 1)/k.
This vertical stretch does not change the relative vertical order of the y-coordinates of the endpoints of the
steps.

Definition 3.1. A k-Catalan–Spitzer path of order n is a lattice path consisting of (k− 1)n+ 1 up steps (1, n)
and n down steps (1,−((k − 1)n+ 1) from (0, 0) to (kn+ 1, 0) that remains strictly above the line y = 0.

There is a natural bijection between augmented k-Catalan paths and k-Catalan–Spitzer paths of order n: we
associate to each augmented k-Catalan path (0, 0), (1, z1), . . . , (kn, zkn), (kn+ 1, 1) the k-Catalan–Spitzer path
(0, 0), (1, z′1), . . . , (kn, z′kn), (kn + 1, 0) in which up steps and down steps follow in the same order. Hence the
number of k-Catalan–Spitzer paths of order n is also the Fuss-Catalan number Cn,k. The second coordinates z′i
of the lattice points in a k-Catalan–Spitzer path pairwise differ and may be easily computed from the second
coordinates zi of the corresponding augmented k-Catalan path as follows. Since a k-Catalan–Spitzer path is
obtained from the corresponding augmented k-Catalan path by first decreasing the second coordinate of each
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Figure 3: The augmented 4-Catalan path whose associated 4-Catalan–Spitzer permutation is
3, 5, 8, 11, 2, 4, 7, 10, 12, 13, 6, 9, 1.

step by 1/(kn+ 1) and then performing a vertical stretch by a factor of (kn+ 1)/k, we obtain that

z′i =
(kn+ 1) · zi − i

k
holds for i = 1, 2, . . . , kn. (6)

The next proposition describes the relative position of these lattice points in a k-Catalan–Spitzer path in terms
of the positions of lattice points in the corresponding augmented k-Catalan path.

Proposition 3.1. Consider an augmented k-Catalan path (0, 0), (1, z1), . . . , (kn, zkn), (kn + 1, 1) of order n,
and let (0, 0), (1, z′1), . . . , (kn, z′kn), (kn+1, 0) be the corresponding k-Catalan–Spitzer path. Then for some i 6= j
the inequality z′i < z′j holds if and only if (−i, zi) < (−j, zj) in the reverse lexicographic order, where coordinates
are compared right to left.

Proof. By (6) we have

z′j − z′i =
(kn+ 1) · (zj − zi) + (i− j)

k
. (7)

Observe first that in the case when zi 6= zj , the sign of z′j − z′i is the same as the sign of zj − zi. Indeed,
(kn + 1) · (zj − zi) in (7) above is a nonzero integer multiple of (kn + 1), whereas |i − j| < kn. On the other
hand, in the case when zi = zj , by (7) we have z′i < z′j if and only if −i < −j holds.

Proposition 3.1 inspires the following definition.

Definition 3.2. A k-Catalan–Spitzer permutation of order n is the relative order of the numbers z′1, . . . , z
′
kn in

a k-Catalan–Spitzer path (0, 0), (1, z′1), . . . , (kn, z′kn), (kn+ 1, 0) of order n. Equivalently it is the relative order
of the lattice points (1, z1), . . . , (kn, zkn) in the corresponding augmented k-Catalan path of order n, where we
order the lattice points first by the second coordinate in increasing order and then by the first coordinate in
decreasing order. In the case when k = 2 we will use the term Catalan–Spitzer permutation.

Example 3.1. An example of an augmented 4-Catalan path and its labeling giving rise to the associated
4-Catalan–Spitzer permutation is shown in Figure 3. There are 3 lattice points at level one, numbered right
to left, followed by 2 lattice points at the next level, and so on. Modifying an idea presented in [11], we may
visualize an augmented k-Catalan path as a description of the movement of a worm crawling around a rooted
plane tree in counterclockwise order, shown on the right of Figure 3. The plane tree is rooted with a root edge
at level 0. Each up step in the lattice path corresponds to the worm moving up one level and each down step
corresponds to the worm moving down (k − 1) levels. We can think of the worm moving down (k − 1) times
faster than up. The set of all rooted plane trees with n+ 1 vertices is in bijection with the set of all augmented
Catalan paths with (n + 1) up steps and n down steps. Only a subset of the set of rooted plane trees with
(k−1) ·n+ 2 vertices corresponds bijectively to the set of (k−1)-Catalan paths with (k−1) ·n+ 1 up steps and
n down steps. The numbering of the lattice points corresponds to the labeling of the points where the worm
begins or ends a move.

In order to describe the finer structure of k-Catalan–Spitzer permutations, we make the following definition.

ECA 4:2 (2024) Article #S2R15 5
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Definition 3.3. Let (i1, . . . , ir) be a vector with nonnegative integer coordinates. We say that a k-Catalan–
Spitzer permutation and the corresponding augmented k-Catalan path has type (i1, i2, . . . , ir) if the augmented
k-Catalan path has ij lattice points at level j. We denote the number of k-Catalan–Spitzer permutations having
type ı = (i1, i2, . . . , ir) by tk(ı).

Note that this definition of type is not unique in the sense that an augmented k-Catalan path has type
(i1, i2, . . . , ir) if and only if it has type (i1, i2, . . . , ir, 0). In other words, we may add as many zero coordinates
to the type of an augmented k-Catalan path as we wish. We exclude the empty lattice path from consideration
as we consider it non-augmented. Hence i1 must be positive.

Let ei denote the ith unit vector. For S a finite subset of positive integers, let eS denote the sum eS =
∑
i∈S ei

and xS denote the product xS =
∏
i∈S xi. Furthermore, we also use the notation xı = xi11 x

i2
2 · · ·xirr . We write

[n] = {1, 2, . . . , n} and [i, j] = {i, i+ 1, . . . , j}.

Lemma 3.1. The numbers tk(ı), where ı = (i1, . . . , ir−1, ir), are determined by the initial condition tk(i1) = δi1,1
where δk1,1 is the Kronecker delta and if there is an index j ∈ [r− k+ 1, r− 1] such that ij < ir then tk(ı) = 0.
When r ≥ k the following recurrence holds:

tk(ı) =

(
ir−k+1 − 1

ir

)
· tk
(
ı− ir · e[r−k+1,r]

)
.

Proof. In an augmented k-Catalan path exactly one lattice point must be at level 1 if the lattice path never
hits level 2. This yields the initial condition. Notice that any lattice point at level r in an augmented k-Catalan
path of type ı is a peak immediately preceded by a run of k − 1 up steps (1, 1) and immediately followed by a
down step (1, 1 − k). By removing these steps, each k-Catalan path of type ı may be uniquely reduced to an
augmented k-Catalan path of type

(i1, . . . , ir−k, ir−k+1 − ir, . . . , ir−1 − ir, ir − ir) = ı− ir · e[r−k+1,r].

Conversely, given an augmented k-Catalan path of type ı− ir · e[r−k+1,r], there are((
ir−k+1 − ir

ir

))
=

(
ir−k+1 − 1

ir

)
ways to select the place to reinsert ir runs of k−1 up steps (1, 1) immediately followed by a down step (1−k, 1),

after one of the ir−k+1 − ir lattice points at level r − k + 1 of the reduced lattice path, where
((
n
j

))
=
(
n+j−1

j

)
denotes the number of j element multisubsets of an n-set.

Using Lemma 3.1 we obtain the following recurrence for the associated generating functions.

Lemma 3.2. The generating functions for the k-Catalan–Spitzer permutations of type ı, that is,

Tk(x1, . . . , xr) =
∑

ı∈P×Nr−1

tk(ı) · xı

are given by the initial conditions Tk(x1) = Tk(x1, x2) = · · · = Tk(x1, . . . , xk−1) = x1 and for r ≥ k by the
recurrence

Tk(x1, x2, . . . , xr) = Tk

(
x1, x2, . . . , xr−k,

xr−k+1

1− x[r−k+1,r]
, xr−k+2, . . . , xr−1

)
. (8)

Observe that the function on the left-hand side of (8) is r-ary, whereas the function on the right-hand side
is (r − 1)-ary.

Proof of Lemma 3.2 . The initial conditions are straightforward to verify. Using the recurrence stated in
Lemma 3.1, we obtain

Tk(x1, . . . , xr) =
∑

ı∈P×Nr−1

ir≤ir−k+1,ir−k+2,...,ir−1

tk
(
ı− ir · e[r−k+1,r]

)
·
(
ir−k+1 − 1

ir

)
· xı

=
∑

ı∈P×Nr−1

ir≤ir−k+1,ir−k+2,...,ir−1

tk
(
ı− ir · e[r−k+1,r]

)
· xı−ir·e[r−k+1,r] ·

(
ir−k+1 − 1

ir

)
· xir[r−k+1,r]. (9)
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Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy

Introduce ` to be the index vector ı − ir · e[r−k+1,r] with the last zero removed, that is, we set `j = ij for
1 ≤ j ≤ r − k and `j = ij − ir for r − k + 1 ≤ j ≤ r − 1. The sum (9) is now

Tk(x1, . . . , xr) =
∑

`∈P×Nr−2

tk(`) · x` ·
∑
0≤ir

(
ir + `r−k+1 − 1

ir

)
xir[r−k+1,r]

=
∑

`∈P×Nr−2

tk(`) · x` · 1

(1− x[r−k+1,r])`r−k+1
.

In order to give an explicit rational expression for these generating functions, we define the denominator
polynomial as follows.

Definition 3.4. Given any positive integer k ≥ 2 and any interval [r, s] of consecutive positive integers, we
define the k-Catalan denominator polynomial Qk(xr, xr+1, . . . , xs) as the signed sum

Qk(xr, xr+1, . . . , xs) =
∑
S

(−1)|S|/k · xS ,

where S ranges over all subsets of [r, s] that arise as a disjoint union of sets consisting of k consecutive integers.
The empty set is included in the sum and contributes the term 1.

Theorem 3.1. For k ≥ 2 we have

Tk(x1, x2, . . . , xr) =
x1 ·Qk(x2, . . . , xr)

Qk(x1, . . . , xr)
.

Proof. For r < k the sets [r] and [2, r] do not contain any subset of k consecutive integers, hence we have
Qk(x1, . . . , xr) = Qk(x2, . . . , xr) = 1 and the identity holds. We proceed by induction for r ≥ k. By Lemma 3.2
the generating function Tk(x1, x2, . . . , xr) is obtained from Tk(x1, x2, . . . , xr−1) by substituting xr−k+1/(1 −
x[r−k+1,r]) into xr−k+1. This substitution turns the stated formula for Tk(x1, x2, . . . , xr−1) into a four-level
fraction which may be transformed into a quotient of two polynomials by multiplying the numerator and the
denominator by 1 − x[r−k+1,r]. This operation leaves all monomials xS where S ⊆ [r − 1] containing a factor
of xr−k+1 unchanged, as replacing xr−k+1 with xr−k+1/(1− x[r−k+1,r]) and then multiplying by 1− x[r−k+1,r]

amounts to no change at all. On the other hand, each monomial xS satisfying r − k + 1 6∈ S is replaced with
xS − xS · x[r−k+1,r].

Assuming the induction hypothesis, the terms xS appearing in the denominator of Tk(x1, . . . , xr−1) are
indexed exactly by those subsets S ⊆ [r − 1] which arise as a disjoint union of sets consisting of k consecutive
integers. Each such set is also a subset of [r], and by our recurrence the corresponding term xS remains in the
denominator with the same coefficient. The additional new terms in the denominator of Tk(x1, x2, . . . , xr−1) are
exactly the terms xS ·x[r−k+1,r] where S ranges through all terms of Qk(x1, . . . , xr−1) that do not contain xr−k+1

as a factor. Note that r− k+ 1 6∈ S ⊆ [r− 1] implies S ⊆ [1, r− k] as the interval [r− k+ 2, r− 1] contains less
than k consecutive integers. The converse is also true. Hence the monomial xS ·x[r−k+1,r] is square-free, and the
underlying set is obtained by adding the disjoint set [r−k+1, r] consisting of k consecutive integers to S. Hence
we are adding exactly those terms of Qk(x1, . . . , xr) to the denominator which do not appear in Qk(x1, . . . , xr−1),
and the sign of xS · x[r−k+1,r] is the opposite of xS , consistent with the definition of Qk(x1, . . . , xr). Similar
reasoning may be used to show that the numerator of Tk(x1, x2, . . . , xr) is x1 ·Qk(x2, . . . , xr).

Example 3.2. As an example of Theorem 3.1, we obtain for k = 3 and r = 6

T3(x1, x2, . . . , x6) =
x1 · (1− x[2,4] − x[3,5] − x[4,6])

1− x[1,3] − x[2,4] − x[3,5] − x[4,6] + x[1,6]
.

Theorem 3.1 may be restated in a more compact form in terms of the following generalization of continuants.

Definition 3.5. The nth k-continuant Kk,n(x1, x2, . . . , xn) is defined recursively by the initial condition Kk,n =
x1x2 · · ·xn for n < k and for n ≥ k by the recurrence

Kk,n(x1, x2, . . . , xn) = Kk,n−k(x1, x2, . . . , xn−k) +Kk,n−1(x1, x2, . . . , xn−1) · xn.

Note that for k = 2 Definition 3.5 is the classical definition of the continuants. The verification of the
following facts for k-continuants are completely analogous to the proof in the k = 2 case, and are left to the
reader.

Proposition 3.2. The k-continuant Kk,n(x1, x2, . . . , xn) can be computed by taking the sum of all possible
products of x1, x2, . . . , xn in which any number of disjoint sets of k consecutive variables are deleted from the
product x1x2 · · ·xn.
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Proposition 3.3. Introducing the k × k matrix

Mk(x) =


x 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .

0 0 . . . 1 0

 ,

we may write 
Kk,n(x1, x2, . . . , xn)

Kk,n−1(x1, x2, . . . , xn−1)
...

Kk,n−k+1(x1, x2, . . . , xn−k+1)

 = Mk(xn)Mk(xn−1) · · ·Mk(x1)


1
0
...
0

 .
Proposition 3.4. The number of terms in Kk,n(x1, . . . , xn), that is, Kk,n(1, . . . , 1), is recursively obtained by

Kk,n(1, . . . , 1) =

{
1 for 0 ≤ n ≤ k − 1,

Kk,n−k(1, . . . , 1) +Kk,n−k(1, . . . , 1) for n ≥ k.
(10)

For k = 2 the sequenceK2,n(1, . . . , 1) is the Fibonacci number Fn. For k = 3 the sequence {K3,n(1, . . . , 1)}n≥0
is sequence A000930 in [8], also known as Narayana’s cow sequence. The same page also contains information
regarding the general sequence {Kk,n(1, . . . , 1)}n≥0.

As a direct consequence of Definition 3.4 and Proposition 3.2, we have the following corollary.

Corollary 3.1. Given any positive integer k ≥ 2, let ζ denote a primitive (2k)th root of unity. Then for
any interval [r, s] of consecutive positive integers, the k-Catalan denominator polynomial Qk(xr, xr+1, . . . , xs)
is given by

Qk(xr, xr+1, . . . , xs) = ζs−r+1 · xrxr+1 · · ·xs ·Kk,s−r+1

(
1

ζxr
,

1

ζxr+1
, . . . ,

1

ζxs

)
.

Substituting Corollary 3.1 into Theorem 3.1, after simplifying by x1x2 · · ·xr, we obtain the formula

Tk(x1, x2, . . . , xr) =
1

ζ
·
Kk,r−1

(
1
ζx2

, . . . , 1
ζxr

)
Kk,r

(
1
ζx1

, . . . , 1
ζxr

) . (11)

We conclude this section by having a closer look at the Catalan case. Using the well-known relation between
continuants and continued fractions, equation (11) may be rewritten as

T2(x1, x2, . . . , xr) =
1

i
·

1

1
i·x1

+
1

1
i·x2

+
. . .

1
1

i·xr

=
1

1
x1
−

1

1
x2
−
. . .

1
1
xr

, (12)

where i is the square root of −1.

Remark 3.1. Equation (12) is also a consequence of Flajolet’s result [2, Theorem 1] which provides a generating
function formula for Motzkin paths, starting at (0, 0) and ending on the x axis consisting of up steps (1, 1), down
steps (1,−1) and horizontal steps (1, 0) that never go below the x-axis. To obtain Equation (12), we must set
ci = 0 and ai = bi = xi+1 for all i ≥ 0 in Flajolet’s formula and multiply the resulting generating function
by x1. The additional factor of x1 is induced by the fact that we consider augmented Catalan paths. Thus we
obtain the generating function

x1

1−
x1x2

1−
x2x3

1−
x3x4

. . .

.

It is straightforward to see that we obtain the generating function that is the limit, as r goes to infinity, of the
function given in (12).
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4. Short k-Catalan–Spitzer permutations

The k-Catalan–Spitzer permutations defined in the previous section contain redundant information. In this
section we show that we may restrict our attention to the lattice points which are the lower ends of the up
steps. The resulting permutations have a particularly nice representation when we consider the Foata–Strehl
group action [3, 4].

Definition 4.1. A short k-Catalan–Spitzer permutation of order n is the relative order of the numbers z′i1 , . . . ,
z′i(k−1)n

in a k-Catalan–Spitzer path (0, 0), (1, z′1), . . . , (kn, z′kn), (kn+ 1, 0) of order n, where {i1, i2, . . . , i(k−1)n}
is the set of indices ij ≥ 1 satisfying z′ij < z′ij+1. In the case when k = 2 we use the term short Catalan–Spitzer
permutation.

In analogy to Definition 3.2, a short Catalan–Spitzer permutation may be also defined in terms of k-Catalan
paths as follows.

Proposition 4.1. The set of short k-Catalan–Spitzer permutations of order n is the set of all permutations
arising by the following procedure. Take a k-Catalan path of order n and number its up steps so that the values
increase from right to left at the same level and upward between different levels. Record the numbers along the
lattice path.

We will say that a short k-Catalan–Spitzer permutation σ is induced by a k-Catalan path P if the procedure
described in Proposition 4.1 applied to P yields the permutation σ.

A short k-Catalan–Spitzer permutation associated to a k-Catalan path may be computed directly from the
corresponding (full) k-Catalan–Spitzer permutation using the notions of an ascents and patterns. Recall that
the index i ∈ {1, . . . , n−1} is an ascent of a permutation π(1)π(2) · · ·π(n) if π(i) < π(i+1) holds. Furthermore,
given an ordered alphabet X with n letters, a permutation of X is a word w1w2 · · ·wn containing each letter of
X exactly once. The pattern of the permutation w is the permutation π(1)π(2) · · ·π(n) of the set {1, 2, . . . , n}
satisfying π(i) < π(j) if and only if wi < wj for each 1 ≤ i < j ≤ n.

The following lemma follows directly from the definitions.

Lemma 4.1. Let π(1)π(2) · · ·π(kn) and σ(1)σ(2) · · ·σ((k−1)n) be a k-Catalan–Spitzer, respectively a short k-
Catalan–Spitzer, permutation of order n associated to the same k-Catalan–Spitzer path. Then σ(1)σ(2) · · ·σ((k−
1)n) is the pattern of π(i1)π(i2) · · ·π(i(k−1)n) where {i1, i2, . . . , i(k−1)n} is the set of ascents of π(1)π(2) · · ·π(kn).

Example 4.1. Consider the 4-Catalan–Spitzer permutation 3, 5, 8, 11, 2, 4, 7, 10, 12, 13, 6, 9, 1 of order 3 dis-
cussed in Example 3.1. Its ascent set is {1, 2, 3, 5, 6, 7, 8, 9, 11}. The pattern of the word 3, 5, 8, 2, 4, 7, 10, 12, 6
is 2, 4, 7, 1, 3, 6, 8, 9, 5.

As shown in Proposition 4.2 below, the operation assigning to each k-Catalan–Spitzer permutation (equiva-
lently, each k-Catalan path) the corresponding short k-Catalan–Spitzer permutation is injective. We will prove
this by considering the Foata–Strehl trees of short k-Catalan–Spitzer permutations. Recall that a plane 0−1−2
tree is a rooted plane tree, in which each vertex has degree at most 2. (It is not unusual to call plane 0− 1− 2
trees plane binary trees. However, a plane binary tree in the strict sense cannot contain a vertex with a single
child.)

Definition 4.2. Let w1w2 · · ·wn be a word with letters from an ordered alphabet containing no repeated letters.
The Foata–Strehl tree FS(w1w2 · · ·wn) of this word is the plane 0 − 1 − 2 tree defined recursively as follows.
The root of the tree is wi = min(w1, w2, . . . , wn) whose left child is min(w1, w2, . . . , wi−1) and whose right child
is min(wi+1, w2, . . . , wn). There is no left child if i = 1 and no right child if i = n. The subtree of the left child
is FS(w1w2 · · ·wi−1), and the subtree of the right child is FS(wi+1wi+2 · · ·wn).

Clearly, the correspondence between permutations of {1, 2, . . . , n} and Foata–Strehl trees with n vertices is
a bijection.

Lemma 4.2. Let σ = σ(1)σ(2) · · ·σ((k−1)n) be a short k-Catalan–Spitzer permutation induced by a k-Catalan
path P of order n. If σ(i) is the label of an up step that is immediately followed by a down step in P then σ(i)
has no right child. If σ(i) is the label of an up step that is immediately followed by an up step in P then σ(i)
has a right child σ(j) and the level of the up step labeled by σ(j) is one more than the level of the up step labeled
by σ(i).

Proof. If the up step labeled σ(i) is immediately followed by a down step, then the level of the next up step is
not greater than that of the up step labeled σ(i). In this case σ(i+ 1) < σ(i) holds and the right subtree of σ(i)
in FS(σ) is empty. Assume from now on that the up step labeled σ(i) is immediately followed by an up step.
As we follow the up steps along P after the up step labeled σ(i), all have a larger label than σ(i) until P returns
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to the level of σ(i). The label of the next up step is less than the label of σ(i). Hence the labels belonging to
the right subtree of σ(i) in FS(σ) are exactly the up steps belonging to the part P ′ of P that begins with the
up step labeled σ(i) and ends with the first return of P to the same level. The labels in this subtree belong to
up steps whose level is greater than the level of the up step labeled σ(i). The level of the last up step in P ′ is
one more than that of the up step labeled σ(i) and it is the rightmost among all up steps of P ′ at this level.
Hence its label is the least element of the right subtree of σ(i).

Inspired by Lemma 4.2, we define the level of each letter in a permutation as follows.

Definition 4.3. Let T be a plane 0− 1− 2 tree. We define the level of each vertex of T as follows.

1. The level of the root is zero.

2. For any other vertex v, the level of v is the number of right steps in the unique path in T from the root to
the vertex v.

Given any permutation σ = σ(1)σ(2) · · ·σ(n) we define the level of σ(i) as the level of the vertex labeled σ(i) in
the Foata–Strehl tree FS(σ).

Using Definition 4.3 we may rephrase Lemma 4.2 as follows.

Corollary 4.1. Let σ = σ(1)σ(2) · · ·σ((k − 1)n) be a short k-Catalan–Spitzer permutation induced by a k-
Catalan path P of order n. Then for each i the level of the up step labeled σ(i) is the same as the level of σ(i).

An important consequence of Corollary 4.1 is the following.

Proposition 4.2. The operation associating to each k-Catalan path P its induced k-Catalan–Spitzer permuta-
tion is injective.

Proof. Assume the k-Catalan–Spitzer permutation σ is induced by the k-Catalan path P . It suffices to show
that P may be uniquely reconstructed from the Foata–Strehl tree FS(σ) of σ. By Corollary 4.1 the level of each
up step may be read from FS(σ). Note finally that the number of down steps between the up step labeled σ(i)
and the next up step labeled σ(i+ 1) is the difference between the level of σ(i) and the level of σ(i+ 1).

Definition 4.3 allows us to define the level of each letter in any permutation. The next definition allows us
to identify the short k-Catalan–Spitzer permutations by looking at their Foata–Strehl trees.

Definition 4.4. Let T be a plane 0 − 1 − 2 tree with n vertices numbered from 1 to n. We say the that T is
levelwise numbered if the labeling of its vertices satisfies the following criteria:

1. If the level of the vertex labeled i is less than the level of the vertex labeled j then i < j.

2. If the vertex labeled j is in the left subtree of the vertex labeled i then i < j.

3. If the vertex labeled i and the vertex labeled j have the same level, but there is a k < i, j such that vertex
labeled i (respectively j) is in the right (respectively left) subtree of the vertex labeled k then i < j.

Proposition 4.3. Each plane 0− 1− 2 tree has a unique levelwise numbering.

Proof. By Definition 4.4 vertices at the same level must be numbered consecutively. We only need to show that
the second and third rules of the definition uniquely determine the labeling of the vertices at the same level. We
will show this by considering for each vertex v the unique path from the root to v. This path may be encoded
by an r`-word RL(v) defined as follows. As we move along the path from the root to a vertex v, we record a
letter r each time we move to the right child and a letter ` each time to a left child. For example, r`` represents
the left child of the left child of the right child of the root. Clearly the level of v is the number of letters r in its
r`-word. It suffices to show that for vertices at the same level, the second and third rules amount to ordering
their r`-words in the left-to-right lexicographic order as follows: the letter r precedes the letter ` and each word
is succeeded by all words obtained by appending any number of letters ` at their right end.

Consider the r`-words RL(u) and RL(v) encoding the vertices u and v at the same level. Let us compare
their letters left to right and stop where we see the first difference. Two possibilities arise:

1. One of the two words, say RL(u), is an initial segment of the other. Since u and v are at the same level,
in this case we must have RL(v) = RL(u)`k for some k. In this case v is in the left subtree of u and by
the second rule v must have a higher number than u.
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2. Neither of the two words is an initial segment of the other one, and (without loss of generality) the leftmost
letter that is different is r in RL(u) and ` in RL(v). In other words, we have RL(u) = RL(w)rx and
RL(v) = RL(w)`y for some r`-words x and y and a vertex w whose r`-word is the longest common initial
segment of RL(u) and RL(v). In this case, u is in the right subtree of w, v is in the left subtree of w and
the third rule is applicable.

Note that the above two cases, as well as the premises of the second and third rules in Definition 4.4, are
mutually exclusive and represent a complete enumeration of all possibilities. We have shown that the rules in
Definition 4.4 are logically equivalent to defining the above lexicographic order on the r`-words of the vertices
at the same level.

Proposition 4.4. The Foata-Strehl tree of a short k-Catalan–Spitzer permutation of order n is levelwise num-
bered.

Proof. By Lemma 4.2 the Foata–Strehl tree of a short k-Catalan–Spitzer permutation σ satisfies the first
condition of Definition 4.4. Consider two letters σ(i) and σ(j) at the same level. By Lemma 4.2 there is a
k-Catalan path P inducing σ in which σ(i) and σ(j) label up steps at the same level. If the vertex labeled σ(j)
is in the left subtree of the vertex labeled σ(i) then σ(j) precedes σ(i) in σ, that is, we have j < i and σ(i) < σ(j)
must hold as up steps at the same level are numbered in the right to left order. Similarly, if there is a vertex
labeled σ(k) such that the vertex labeled σ(i), respectively σ(j), is in its right, respectively left subtree, then
we must have j < k < i and σ(i) < σ(j) must hold.

We conclude this section with a theorem that completely describes short k-Catalan–Spitzer permutations in
terms of their Foata–Strehl trees.

Theorem 4.1. A permutation σ = σ(1)σ(2) · · ·σ(n) is a short Catalan–Spitzer permutation if and only if its
Foata–Strehl tree FS(σ) is levelwise numbered. It is also a short k-Catalan–Spitzer permutation if and only
if its Foata–Strehl tree FS(σ) also has the following additional property: in each longest path containing only
edges between parent and right child, the number of vertices is a multiple of k − 1.

Proof. By Proposition 4.2 the number of short Catalan–Spitzer permutations of order n is the Catalan num-
ber Cn. By Proposition 4.4 the Foata–Strehl tree FS(σ) of each short Catalan–Spitzer permutation must be
levelwise numbered. By Proposition 4.3 each plane 0− 1− 2 tree has exactly one levelwise numbering, and the
number of plane 0− 1− 2 trees on n vertices is also the Catalan number Cn. Therefore the set of Foata–Strehl
trees of all short Catalan–Spitzer permutations of order n must equal the set of all levelwise numbered plane
0− 1− 2 trees on n vertices.

To prove the second statement, observe that each k-Catalan path of order n may be transformed into a
Catalan path of order (k − 1)n by replacing each down step (1, 1 − k) with a run of k − 1 consecutive down
steps (1,−1). Under this correspondence k-Catalan paths of order n bijectively correspond to those Catalan
paths of order (k− 1)n in which the length of each longest run of consecutive down steps is a multiple of k− 1.
Using this correspondence it is easy to see that a short Catalan–Spitzer permutation of order n is also a short
k-Catalan–Spitzer permutation of order n if and only if for each i ∈ {1, 2, . . . , n− 1} the difference between the
level of σ(i) and the level of σ(i+ 1) is a multiple of k− 1. This condition is equivalent to the condition stated
in the theorem. The details are left to the reader.

5. A restricted Foata–Strehl group action and its enu-
merative consequences

Foata–Strehl trees were first defined [3,4] to introduce the Foata–Strehl group action on permutations of order n.
This Zn−12 action is generated by n−1 commuting involutions φ1, φ2, . . . , φn−1, where φi swaps the left and right
subtrees of the vertex labeled i in the Foata–Strehl tree of each permutation. (Both subtrees may be empty.)
Theorem 4.1 provides a characterization of short k-Catalan–Spitzer permutations in terms of their Foata–Strehl
trees. Unfortunately, in most cases the Foata–Strehl action destroys the levelwise numbering, except for some
special situations. In this section we focus on such a special situation, introduce a subgroup of the Foata–Strehl
group action, and observe how it may be used in proving identities in enumerative combinatorics beyond the
world of Catalan objects.

Definition 5.1. Let X be an ordered alphabet, x ∈ X and w a permutation of X. We say that w is x-
decomposable if it may be written in the form w = w1w2w3 such that the following hold:

1. All letters of w1 and w3 are less than x;

2. all letters of w2 are greater than or equal to x;
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3. the letter x is either the first or the last letter of w2.

Under the above circumstances, we call the decomposition w = w1w2w3 the x-decomposition of w. An x-flip
consists of moving the letter x from one end of the subword w2 to its other end.

When x = max(X) is the largest element of the alphabet X, any permutation is trivially x-decomposable
since w2 must consist of the single letter x. For this x, the x-flip is the identity map. For all other x ∈ X an
x-decomposition must be nontrivial as w2 must contain all letters larger than x. The application of an x-flip
results in a different word. The verification of the following equivalent description is left to the reader.

Proposition 5.1. For x < max(X) the permutation w is x-decomposable if and only if its Foata–Strehl tree
FS(w) satisfies the following:

1. exactly one of the right and left subtrees of x is empty;

2. the set of descendants of x contains all letters larger than x.

If w has an x-decomposition, an x-flip is precisely the application of the operation φx of the Foata–Strehl group
action.

An important consequence of Proposition 5.1 is that x-flips and y-flips commute the same way the generators
of the Foata–Strehl group action commute.

Corollary 5.1. If a word w is simultaneously x-decomposable and y-decomposable then the same holds for
φx(w), φy(w) and φxφy(w). Furthermore, φxφy(w) = φyφx(w)

Definition 5.2. Given an ordered alphabet X, we extend the x-flip operations φx to all permutations w of X
by setting φx(w) = w whenever w is not x-decomposable. We call the group action generated by the operations
{φx x < max(X)} the restricted Foata–Strehl group action on the permutations of X.

Our interest in x-decompositions and x-flips is due to the following result.

Theorem 5.1. If a short Catalan–Spitzer permutation σ of order n is i-decomposable for some i < n then its
i-flip φi(σ) is also a short Catalan–Spitzer permutation.

Proof. By Proposition 5.1 the set of descendants of i is the set {i + 1, i + 2, . . . , n} and all of them are in the
subtree of i + 1, which is the only child of i. If i + 1 is the right child of i then the level of i + 1 is one more
than the level of i, i is the largest letter at its level and i + 1 is the smallest letter at its level. Moving i + 1
to the left of i results in merging the levels of i and i+ 1 into a single level: the level of the labels larger than
i + 1 uniformly decreases by one. For all other labels, the sets of labels at the same level remains unchanged.
Consider two vertices u and v whose label belongs to the merged level. If the labels of u and v are both greater
than i, then the shortest path leading to both contains the vertex i+1: moving i+1 to the left induces changing
a letter r into a letter ` in the same position in both RL(u) and RL(v). Such a change does not affect the
relative order of the two r`-words in the lexicographic order. If the labels of u and v are both at most i, then
RL(u) and RL(v) remain unchanged after moving i+ 1 to the left of i. Consider finally the case when the label
of u is at most i and the label of v is less than i. When the vertex labeled i+ 1 is the right child of the vertex
labeled i then the label of v is more than the label of u because they are at different levels. When we move the
vertex labeled i+ 1 to the left, the vertex v becomes a vertex in the left subtree of the vertex labeled i, hence
its label must be still greater than i and also greater than the label of the vertex u (whose r`-word remains
unchanged).

We have shown that applying an i-flip to an i-decomposable Catalan-Spitzer permutation that moves i+ 1
from the right to the left results in a Catalan-Spitzer permutation. The proof of the converse is analogous and
left to the reader.

As a consequence of Theorem 5.1 the set of all Catalan-Spitzer permutations of order n may be partitioned
into orbits of the restricted Foata–Strehl group action. A question naturally arises, namely, what is the number
of such orbits. We answer this in the greatest generality. A class of permutations P is a rule assigning to each
finite ordered set X a subset P|X|(X) of its permutations in such a way that membership of w in P|X|(X)
depends only on the pattern of w. For brevity, we will say that a permutation w belongs to the class P if w is
an element of P|X|(X) for some finite set X.

Definition 5.3. A class of permutations is compatible with the restricted Foata–Strehl group action if it
satisfies the following: for each x ∈ X and for each x-decomposable w ∈ P|X|(X) the following holds:

1. The permutation φx(w) belongs to to the class P.

2. If w1w2w3 is the x-decomposition of w then w2 and w1w3 also belong to the class P.
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For a class of permutations P that is compatible with the restricted Foata–Strehl group action, let Pn, re-
spectively On, be the number of permutations in P({1, 2, . . . , n}), respectively number of orbits of the restricted
Foata–Strehl group action on the set P({1, 2, . . . , n}). We introduce the ordinary generating functions

P (x) =
∑
n≥1

Pn · xn and Q(x) =
∑
n≥1

Qn · xn. (13)

We consider these generating functions as formal power series from Q[[x]]. Our first general result is the
following.

Theorem 5.2. The generating functions P (x) and O(x) satisfy

P (x) =
O(x)

1−O(x)
(14)

equivalently,

O(x) =
P (x)

1 + P (x)
(15)

Proof. We only need to show (14) as equation (15) is algebraically equivalent. For each σ ∈ P({1, 2, . . . , n})
denote the orbit of σ under the restricted Foata–Strehl group action by [σ]. To each orbit [σ] we may associate
a set I([σ]) ⊆ {1, 2, . . . , n− 1} such that each permutation in the orbit is i-decomposable if and only if i is an
element of I([σ]). The size of the orbit will be 2|I([σ])|. We say that σ is a distinguished orbit representative if
for each i ∈ I, the letter i+ 1 is to the right of i in σ. Equivalently, in the Foata–Strehl tree FS(σ) of σ, each
i ∈ I([σ]) has a right child and not a left child. Clearly, there is exactly one distinguished orbit representative
in each orbit. For all permutations σ ∈ P({1, 2, . . . , n}) that are not distinguished orbit representatives, there
is a unique smallest k ∈ I([σ]) such that k + 1 is the left child of k and i + 1 is a right child for all i ∈ I([σ])
satisfying i < k. The removal of the left subtree of k + 1 results in the Foata–Strehl tree of a distinguished
orbit representative in P({1, 2, . . . , k}), whereas the left subtree of k is the Foata–Strehl tree of a permutation
in P({k + 1, k + 2, . . . , n}). The two permutations may be selected independently and determine σ uniquely.
This observation justifies the formula

Pn = On +

n−1∑
k=1

Ok · Pn−k.

The stated formula for the generating functions follows immediately.

Example 5.1. If P is the class of short Catalan-Spitzer permutations then P (x) = C(x)− 1 where

C(x) =
∑
n≥0

Cn · xn =
1−
√

1− 4x

2x

is the generating function of the Catalan numbers. Equation (15) gives O(x) = C(x)−1
C(x) = x · C(x). Hence

On = Cn−1.

Example 5.2. If P is the class of all permutations then P (x) =
∑
n≥1 n!xn. Equation (15) gives the ordinary

generating function of the indecomposable permutations. The numbers of these are listed as sequence A003319
in [8].

To refine Theorem 5.2 let Pn,k denote the number of permutations belonging to an orbit of size 2k of the
restricted Foata–Strehl group action on P({1, 2, . . . , n}) and let On,k be the number of orbits of size 2k. Clearly,
we have

On,k =
Pn,k
2k

. (16)

We introduce the generating functions

P (x, y) =
∑

n≥1,k≥0

Pn,kx
nyk and O(x, y) =

∑
n≥1,k≥0

On,kx
nyk.

Theorem 5.3. The generating functions P (x, y) and O(x, y) are given by

P (x, y) =
P (x)

1− 2(y − 1)P (x)
, (17)

O(x, y) =
P (x)

1− (y − 2)P (x)
. (18)

ECA 4:2 (2024) Article #S2R15 13
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Proof. We use the notation I([σ]) introduced in the proof of Theorem 5.2. Given any σ ∈ P({1, 2, . . . , n}) and
any element i1 of I([σ]), the permutation σ may be written as a concatenation of words

σ = σ0σ1σ
′
0, (19)

where σ0i1σ
′
0 is an element of P({1, 2, . . . , i1}) and σ1 is an element of P({i1, i1 + 1, . . . , n}) containing i1 as

the first or the last letter. At the level of Foata–Strehl trees, FS(σ) may be obtained by selecting a levelwise
labeled plane 0− 1− 2 tree with i1 vertices and then adding any Foata–Strehl tree with n− i1 as the right or
left subtree of i1. Iterating the procedure, for any subset {i1, i2, . . . , ik} of I([σ]) satisfying i1 < i2 < · · · < ik
we may decompose FS(σ) into a sequence of Foata–Strehl trees (T0, T1, . . . , Tk) such that

1. T1 = FS(σ0i1σ
′
0) for some σ0i1σ

′
0 ∈ P({1, 2, . . . , i1});

2. for j = 2, 3, . . . , k − 1 the labeled tree Tj = FS(σj−1ijσ
′
j−1) for some σj−1ijσ

′
j−1 ∈ P̂({ij−1 + 1, ij−1 +

2, . . . , ij});

3. Tk = FS(σk−1ikσ
′
k−1) for some σk−1ikσ

′
k−1 ∈ P({ik−1 + 1, ik−1 + 2, . . . , ik}), or it may be empty;

4. for j = 2, . . . , k the labeled tree Tj is the right or left subtree of ij .

Conversely, if FS(σ) is decomposed into into a sequence of Foata–Strehl trees (T0, T1, . . . , Tk) satisfying the
above criteria then {i1, i2, . . . , ik} must be a subset of I([σ]). Introducing the variable y to mark the selected
elements of I([σ]), we obtain the formula

P (x, 1 + y) =
∑

n≥1,j≥0

Pn,jx
n(1 + y)j = (1 + P (x)) ·

∑
k≥0

(2y)kP (x)k =
1 + P (x)

1− 2yP (x)
.

Equation (17) follows by replacing y with y − 1 in the last equation. To obtain (18), by equation (16), we only
need to substitute y/2 into y in (17).

Note that Theorem 5.2 may be obtained by substituting y = 1 in (18).

Example 5.3. For Catalan–Spitzer permutations we have P (x) = C(x)− 1 and

O(x, y) =
C(x)− 1

1− (y − 2)(C(x)− 1)

= x+ yx2 + (y2 + 1)x3 + (y3 + 2y + 2)x4 + (y4 + 3y2 + 4y + 6)x5

+(y5 + 4y3 + 6y2 + 13y + 18)x6 + · · ·

Substituting y = 1 and y = 2 gives O(x) = xC(x) and P (x) = C(x) − 1, respectively. The substitutions
y = 3, 4, 5, 6 are listed as sequences A001700, A049027, A076025, A076026 in [8]. The generating functions listed

for these sequences are all substitutions into y in 1−(y−2)xC(x)
1−(y−1)xC(x) which is easily seen to be equal to 1 +O(x, y).

Example 5.4. For all permutations we have P (x) =
∑
n≥1 n!xn and

O(x, y) =
P (x)

1− (y − 2)P (x)

= x+ yx2 + (y2 + 2)x3 + (y3 + 4y + 8)x4 + (y4 + 6y2 + 16y + 48)x5

+(y5 + 8y3 + 24y2 + 100y + 328)x6 + · · ·

Substituting y = 1 and y = 2 gives O(x) and P (x), respectively. The substitution y = 3 is listed as sequence
A051296 in [8]. The presence of this substitution is not surprising: O(x, 3) = P (x)/(1 − P (x)) is always the
generating function for the ordered collections of permutations in the class P.

6. Concluding remarks

Are there any other results on the distribution of the quantity α for more for general paths from the origin
(0, 0) to (s, 0)? For instance, what can be said if we have one type of up step, but two types of down steps?

Are there other Fuss–Catalan structures that belong to a larger set of structures of cardinality
(
kn+1
n

)
with

a uniformly distributed statistic on the set {0, 1, . . . , kn} and the Fuss–Catalan structure is the fiber of one
particular value of this statistic?
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